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1. Introduction

The concept of equilibrium, as used in economic sciences, is not without ambigu-
ities. Mathematical economics is heavily influenced by the Walrasian notion of the
competitive equilibrium which is a state of an economy, described in terms of the
size and structure of production, production factors and price levels, wherein the
demand for products and production factors equals their supply. It is assumed that
production and exchange processes are fully governed by market mechanisms. Any
“external” interference, e.g. by governmental attempts to regulate prices, is out of
the question as such interference would disrupt the balance between market forces.

In technical science an equivalent of the Walrasian notion of the competitive
equilibrium is a state of a (static) equilibrium attained by an autonomous object
that follows its own “laws of motion™ and that is not affected by any external forces.
The equilibrium is a position that such an object, e.g. a pendulum, will reach by
itself without operation of any external forces and will maintain until disrupted by
an external impulse.

A completely different is the idea of so called von Neumann equilibrium. Here,
an economy will maintain its equilibrium provided that it is capable of increasing
production of each good at the same constant rate and that its technological deve-
lopment is synchronized with economic growth described in value terms. The con-
cept of the economic equilibrium as proposed by J. von Neumann is flawed in that
it restricts equilibria to the realm of production. In the von Neumann model real
consumption problems are shadowed by the essential question of ensuring a steady
growth of production.

* Delivered at the Cracow University of Economics on November 8, 1999; published (in Polish)
at Rector’s Lectures, No 45, Cracow 2000.
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An intermediate concept falling in between the notions of Walras and von
Neumann is that of the neoclassical equilibrium which allows for a balanced growth
of all of such fundamental economic variables as capital, production (revenues),
consumption and investment.

These three currents in mathematical economics are used here as a backdrop for
reflections on the nature of the economic equilibrium in an attempt to establish:

— what qualities are shared by all of the above equilibrium theories,

— whether there is an “absolute” economic equilibrium, and

— whether the theory of economic equilibria can be extended beyond the magic
circle of stationary states.

In the conclusions to the discussion, a presentation is provided of the concept of
a dynamic o - equilibrium formulated on the basis of the systems theory. The con-
cept accounts for the specific nature and relativity of the notion of equilibrium as
applied to complex socio-economic systems.

2. The competitive equilibrium:
the Arrow-Debreu-McKenzie model

In this section a model of a market economy is presented, in which business

entities are naturally opposed to one another as they compete with one another in

pursuing their individual business strategies. Amidst the resulting clashes be-
tween the (typically) opposed interests of a large number of economic players,
the economic agents are unable to exert a direct impact on price levels. All they
can do is to passively accept the existing system and work with their own best
offers to buy or sell goods. Not all price configurations will accommodate their
individual preferences. Formulated over a century ago by L. Walras, the notion
of competitive equilibrium rests on the hypothesis that certain configurations of
prices allow for the individual goals of producers and consumers to mutually
agree and satisfy their needs.

The Arrow-Debreu-McKenzie (A-D-McK) model, presented further in this Sec-
tion, deserves particular attention for two reasons:

— firstly, it is one of the most general models of a competitive economy; most
other models are either its specific case versions or are its more or less elabo-
rated extensions,

— secondly, the model provides a clear and straightforward mathematical struc-
ture, a feature that four decades ago allowed its authors to prove a theorem on
existence of the state of competitive equilibrium.

Assume that an economy comprises (uses up or manufactures) n goods. We will
not specify what proportion of these are consumer goods, which are production
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factors and which can be either (such as a computer that, depending on its use, may
serve as either a production factor or a consumer item). Such a generalization is
common in contemporary mathematical economics and has the advantage of al-
lowing for the application of many fundamental theorems pertaining to topological
structures of compact convex sets.

Let time ¢ be a continuous variable that assumes values within interval
T=[0, +o). Set T is called the time horizon (here unbounded) of the economy. The
moment ¢ = 0 is the starting point of horizon T. By p(¢#) we denote an
n-dimensional (row) vector of prices of goods at time 7. Symbols m and / denote
respectively, the number of producers and the number of consumers.

Further, we will assume that consumers are characterized by:

— preference fields

(x*u )i . x<OR.

where the set X* is a space of goods of the k-t4 consumer with a metric generated
by the norm on space R", and u* is an individual utility function of the -th
consumer,

— initial stocks of goods

a =(af, ...a%)" 20,

where k=1, 2, ..., [ and T is the transposition mark.

Elements of space X* are called goods baskets. They are n-dimensional (col-
umn) vectors with positive components pointing to goods whose purchase is sought
by the k-th consumer and negative components, pointing to goods that the con-
sumer is seeking to sell (such as labor).

The production capacities of producers are represented by their production spaces,

(Vi) vior.

The elements of Y! describe feasible production processes. They are n-dimen-
sional vectors with components that may be positive (positive final production of
goods), negative (negative final production of goods) or zero (simple reproduction
of goods).

The j-th producer employs at time ¢ the criterion of maximization of profit at current
prices p(f) and selects the (column) production vector Yy’ (t) =y{ (), ..., ¥ (t) T
that satisfies the following condition:

y' (t) =g’ (p(t)) = argmax(p(t), y) j=l.om (1
y U y!
The income of the k-th consumer at time 7, denoted by | ¢ (p(t), vi(t), ..., ym(t)),

is partially derived from the sales of initial stocks a* > 0 and partially from his
shares in the profits of producers:
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(), 0, y")=(p0).8)+ S POV O) k=11 @)
=

where Oy;> 0 denotes the share of the k-4 consumer in the profit of the j-t4 pro-
[

ducer, Zakj:l j=1,...,m.
=1

It follows from (1) and (2) that:

1(p), yA(),...y"®)= 1*(p(0), g*(p(®).....a™ (p(1)))=

< j k: 1) LEES) l,
=<p(t),ak>+zakjfl(p(t))quk(p(t)),
=1
where g (p(t)): max<.p(t), y)= < p(t), g’ (p(t))> i=1..m

y[]YJ

Above equations imply that ultimately the profits of produces & j (p(t)) and
incomes of consumers ¢ k (p(t)) depend exclusively on the price vector p(?).

The k-th consumer is restricted in his choice of goods to these baskets whose value
does not exceed ¢ k(p(t)). As a result, at time ¢, the consumer maximizes utility

selecting basket of goods X (t) = (xi‘ ), ....x< (t)) T that satisfies the condition:

x“(t) = £*(p(t)) = argmaxu*(x) k=1,...,1 3)
(p.x) < ¢" (p(1)
x O X

We shall asume that goods spaces, production spaces and initial inventory vec-
tors as well as the utility functions satisfy the following conditions:

(1) the sets X*are closed in R", convex, bounded below and such that when select-
ing any basket XU X k , the consumer may always point to a basket X'J X K of
higher utility that satisfies the condition u* (X) > u*(x);

(2i) the utility functions u* are continuously differentiable, increasing and concave
on X k=1, ..., 1

(3i) the sets Y are closed in R" and convex; moreover Y! n Rf :{0}, Yin (—Yj)
and such that if yOY!, then y'0Y! for any vector y'Sy;

@iy int (Y+{a"})n x* 20, k=1,..,1
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m m . .
where Y = ZYJ = %{‘ y= Zyj; y' OY! %is the global production space.
= H E H

The boundedness from below of sets X* mentioned in (i) actually refers to nega-
tive coordinates describing available production factors that are shown in baskets
x“ 0 X* with the (—) sign and that are inherently limited.

Condition (21) imposed on the consumer utility function is standard. Condition
(31) expresses three postulates:

— the first of them is known as the no cornucopia postulate (no production with-
out inputs),

— the second postulate establishes a technological regime wherein production pro-
cesses cannot be “reversed” (if input ¢ allows for the production of output b=a,
then the process cannot be reversed, i.e. products b cannot be turned back into
the initial collection of goods a),

— the third postulate points to the possibility of waste (if it is possible to produce
the goods vector y, then it is also possible to produce fewer such goods).

In accordance with condition (41), the market holds something of interest for
every consumer and the range of goods available is so wide that consumers have
the choice not only of tapping into a single basket of goods but also of other baskets
comprising similar assortments.

While every producer tries to ensure the maximum profit at given prices,
every consumer makes an effort to select what he believes to be the best basket of
goods he can afford given his particular income. In an competitive equilibrium, all
of these mutually opposed activities take place without upsetting the global bal-
ance between supply and demand and without distorting individual equilibria be-
tween consumers’ incomes and expenditures.

Definition 1. The vector system
(>‘<1, X Y™, r))
with the price vector P 20 constitutes an equlibrium of the A-D-McK economy

whenever it satisfies the following conditions:
(D every producer maximizes his profit at equilibrium prices:

<F—),)—,J>:gzj(r)):max<p,y> j=1,..,m

y[]YJ

(IT)  the expenditure of each individual consumer does not exceed his income:

xKOX*  and <p,>‘<">s¢"(p),
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where  9K(p)=(pa)+S ay&'(B), k-1
]=1

(IIT) every consumer maximizes utility subject to his budget constraint at
equlibrium prices:
uk()f(k) maxu (X) k=1, ..., 1
(px) <" (p)
x O X
(IV) the global demand for each good does not exceed its supply:

| ‘ | ‘ m
x<§Sa+Yy

Above definition is one of the most general definitions of a competitive equilib-
rium in mathematical economics. The proof of the existence of a competitive equi-
librium under assumptions (i) — (4i) can be found e.g. in (Panek 1993, 2000). In
addition, extensive literature is available providing proofs of the existence of com-
petitive equilibria in other models which represent more or less close approxima-
tions of the A-D-McK model (cf. e.g. Allingham 1975, Intriligator 1971, Mas-
Coell 1985, Mukherji 1990, Nikaido 1968).

The very existence of a competitive equilibrium would not attract any special
attention among economists were it not for the strong belief of free market advo-
cates that the market adjustments lead the economy towards equilibrium, which in
fact is a belief in the inherent stability (local or global) of economies.

In order to explore the nature of such a stability, we define the function of sur-

plus demand at tlme t as the difference between global demand f p(t))and
global supply Za + (p(t))

| | m
F(p(t))=;fk(p(t))— a3 g'(p)
=1 =

1 j=1
where in accordance with (1) and (3):
t*(p®)=x(t) and g'(p®)=y'®).
Further we shall need two additional assumptions:

(51) the function of surplus demand F(p) is continuous and differentiable
everywhere on its domain except zero and satisfies the condition:
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p =00 F(p)>0
(the demand for goods offered free of charge always exceeds their supply),

(61) the inequality
oF .1
A—A <0
ap
is satisfied for every vector A = ()\1, ...,)\n) , that contains at least one positive
and one negative element (this is the standard condition for the so-called nor-
mal markets in which an increase in the price of i-#& good reasults in stronger

drop of demand for that good than any other goods).

Note that the surplus demand does not depend on the level of prices but rather
on their structure:

F(Ap) =F(p) forA >0.

Consequently, equilibrium prices are also defined with accuracy up to the struc-
ture, i.e. if the system of vectors for ()‘(1, ...,)_(I , 71, ..,y", P) describes an economy
in a state of equilibrium, then the system (X%, ....X', ¥*,...,y™, p') with any price
vector p’ on the ray

P={p| >0}

also describes an equilibrium.
Assume that prices change according to the standard equation:

d
4 PO =0F (p®)) (4)
where (o > 0) and at the initial point of time ¢ = 0 prices are given:

p(0)=p°>0 Q)

A non-negative solution to the set of equations (4) with the initial condition (5)
is called the feasible trajectory of prices in the A-D-McK economy. The functions
v/ (), x * (¢) that correspond thereto in accordance with (1) and (3) are called (re-
spectively) the feasible production trajectory (of the j-th producer) and the feasible
demand trajectory (of the k~th consumer); j=1, ..., m; k=1, ..., L

Assume that vectors ()‘(1, X 71, ...,y", P) describe a competitive equilib-
rium in the A-D-McK economy.

Definition 2. The economy is globally asymptotically stable if, for any initial
price vector p° > 0, every feasible price trajectory {p(t)}:’;o is convergent to a cer-
tain vector of equilibrium prices:

Ii£n p(t)=pUP.
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Under assumptions (i)-(61), there is such a price vector P, determined up to the
structure, that F(P) =0 (global demand is equal to global supply) and the A-D-
McK economy is globally asymptotically stable (Panek 1997, 2000). Moreover:

y©=9'(p®)m-g'(®)=y" j=1....m

X = f(p®)m - (P =% k=1,...1

i.e. as time passes, not only are price trajectories convergent to the equilibrium
price vector but, in addition, production and demand trajectories are convergent to
the production and demand vectors in a state of equilibrium. The price trajectory
p(t) is_situated on the surface of an n-dimensional sphere with the radius

r= <p°, p°> >0 . Its convergence to the ray P of equilibrium prices is illus-
trated in Fig. 1.

p3 A

Py

Fig. 1. Illustration of the convergence of price trajectory p(7)
to the equilibrium price ray in R®

3. The von Neumann equilibrium

It is difficult to overestimate the contribution of J. von Neumann to mathematics,
economics and even computer science (binary systems). In a strange coincidence,
it was not until after World War II (1946) that his equilibrium model, first pub-
lished in 1937, was noticed and attracted economists’ attention.

In the von Neumann economy a finite number of goods # are used and produced
with the use of a finite number of production processes m called base technological
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processes. The number of base technological processes may be larger than, smaller
than or equal to the quantity of goods.

As in the A-D-McK model, the terms goods and process are used in a broad
sense. Thus, goods include land, materials, fuels, energy, semi-finished products,
finished products, production facilities depreciated to varying degrees, labor hav-
ing varying qualifications, etc. Technological processes are identified with activi-
ties whose effect is to turn one type of goods into another. Such processes may
simultaneously refer to activities in the area of production, investment, consump-
tion, transportation, warechousing, education, etc.

Let a; =(aj1,-.-,ajy) denote a (row) vector of inputs and b; = (bjy,....0j,)
a (row) vector of outputs of the j-th base technological process carried out with the

unit intensity, j=1, ..., m. Let A and B denote rectangular m x n matrices:
EaHK = H B’wK b.ln
A= [5211K o, O _h K, b2n
0 0 M

@mK amnﬁ ﬁamK bmnﬁ

The non-negative matrix A is called the input matrix , whereas the non-negative
matrix B is the output matrix. We assume that:

(i) each row of matrix A contains at least one positive element,
(2i) each column of matrix B contains at least one positive element.

It follows from assumption (i) that at least one type of goods is used in the base
technological process (the no cornucopia postulate described in the previous Sec-
tion). Under (2i), every type of goods is made with the use of at least one base
technological process.

The model is linear in the sense that any non-negative linear combination of
base technological processes is a feasible production process, i.e. for any (row)
vector & = (I, ...,9,,) 2 0, inputs 94 can be used to produce outputs IB. Vector 4
describes intensities at which the base technological processes are used. In the von
Neumann model, the set

={q|q=9B-9A 9=0}
is a global production space (we saw such a space in the previous point under

assumption (41)).
Consider an intensity vector ¢ > 0 and process (94, 9B). The number,
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@B

a,(9) =07
O +o, when (JA); =0 and (IB); >0

H an indeterminate form, when (JA), =(IB);, =0

when (JA); >0

is called the technological effectiveness of production of the i-#4 good in process
(94, 9B). The number

ad) = miin a, ()

represents, in turn, the technological effectiveness of the whole process (94, 9B).
Finally, the number

a, = maxa(d)
970
represents the optimal technological effectiveness of production. Vector 9 Z 0,
for which ay, =a(d), is an optimal intensity vector, whereas vectors X =3A
and Y = 9B represent the optimal input and output vectors.

Under assumptions (i) and (2i), there is an optimal intensity vector in the von
Neumann economy defined with accuracy up to the structure (by the same token,
there exist optimal input and output vectors defined with accuracy up to the struc-
ture (Panek 1997, 2000).

Let p Z 0 denote an n-dimensional (column) price vector. The number

098p

HsAp'

B&.p) = E +0, whenJAp=0 and IBp>0
H an indeterminate form, whenJAp=9Bp=0

when JAp>0

represents the economic effectiveness of process (94, 9B) at prices p.

Definition 3. The intensity vectord Z 0, the price vector PZ 0 and number
a > 0 describe an equlibrium in the von Neumann economy if they satisfy the
following conditions:

) adA < 9B
(IT) Bp < aAp
Iy  9Bp >0
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Vector & is the equlibrium intensity vector describing intensities at which the
base technological processes are used in equilibrium. Vector P in turn, is the equi-
librium price vector.

Prices and the production intensities in equilibrium are defined with accuracy
up to the structure.

It can be shown that the number « represents the technological effectiveness of
the equilibrium process (3 A IB):

a=a@d).

Moreover
a@)=B®.p)2LBH.P)

for each intensity vector ¢ 2 0 for which formula 3 (19, ﬁ) is defined.

In other words, in the von Neumann equilibrium, the technological effective-
ness of production equals the economic effectiveness and represents the maximum
effectiveness the economy can achieve at equilibrium prices.

It can be demonstrated that, under assumptions (i) and (2i), there is a state of
equilibrium characterized by the optimal technological effectiveness o = «,, and
that the number of von Neumann equilibria at various levels of technological effec-
tiveness a < a,, does not exceed min{m, n}, (Czeremnych 1982).

The particular state of equilibrium (@ ,3, P) is called the optimal equilibrium
in the von Neumann economy.

Assume now that time changes descreetly and that the (bounded) horizon of the
economy T ={ 0,1LK, tl}. Let $(¢) be an m-dimensional row vector of the inten-
sities of the base technological processes in period .

The von Neumann economy is closed in the sense that the sole source of inputs
in the subsequent period ¢ + 1 is the production (output) from the previous period z.
Formally, that means that the follwoing inequalities are satisfied:

F(t+DA<I(H)B t=0,1,...,¢-1,
(6)
8(t) 20 1=0,1,...,1,
or alternatively:
AS(t) DD(S(t)), t=0,1,..., t-1 (6a)

where @ is a multifunction:
o@(t)={z|z=9-8(t), SA<I(t)B, 820}
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Let 9°Z 0 represents the intensity at which base technological processes are
employed in the initial period (z = 0).

9(0) =9° (7

The sequence of vectors {19(t) :1: o that satisfy conditions (6) and (7) is called the
feasible trajectory of intensity in the von Neumann model. The corresponding se-

quences {x(t)}?: 0 {y(t)}?: o» Where
x®)=s(t)A y(t)=3(t)B ®)

are called (respectively) feasible input and output trajectories.
From all feasible intensity trajectories, particular importance is attributed to tra-
jectories assuming the form:

I(t) = y'9° t=0,1,...,1,

where y > 0 is the rate of economic growth.

It should be stressed, that the fastest growth which can be achieved by the von
Neumann economy equals its optimal technological effectiveness «,, . Thus, we
may consider trajectory of intensity:

I =ayd )

where 9 is a vector of intensity in the von Neumann optimal equilibrium (Panek
1997, 2000). The trajectory described by (9) is called the optimal steady growth
intensity trajectory in the von Neumann model. The half line

N={A8 | >0

is called the turnpike or the von Neumann ray.

Field literature provides many theorems regarding so called, turnpike stability
in the von Neumann-Leontief models with different input-output matrices A and B
which are rectangular or square, semi-positive or containing negative elements
(Czeremnych 1982, Intriligator 1971, Nikado 1968, Panek 1997, 2000). Whereas
such models differ, sometimes significantly, the essence of the turnpike theorems
proved on their basis, principly remains the same.

According to all such theorems, regardless of the initial state of the economy,
the growth trajectories that are optimal in terms of a wide range of criteria, almost
always, with the exception of a certain periods at the beginning and the end of
a specified horizon T, run in any proximity to the turnpike. The longer the time
horizon T, the more pronounced such a convergence.

Further, for the sake of simplicity, we will discuss a particular case of the von
Neumann economy in which the following assumptions are additionally applied:
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(31) the input-output matrices 4 and B are n x n square matrices,

(41) in the optimal state of von Neumann equilibrium (@, ,3,P) the intensity and
price vectors are positive and conditions (I) and (II) of Definition 3 are satis-
fied as equations:

aydA=9B, ay Ap = Bp

(51) the output matrix B is non-singular, matrices AB~' and B~'4 are non-negative,
and all eigenvalues of matrix AB ' are real and distinct.

Itssolution to the system of inequalities (6) with the initial condition (7) is am-
biguous. In other words, under above assumptions, there are many feasible inten-
sity trajectories and hence many feasible input and output trajectories, which sat-
isfy (6) and (7). In order to point out a single specified trajectory, it is necessary to
define a selection criterion. For instance, as growth criterion, we set the maximiza-
tion of the value of production in the last period of horizon T, expressed in equilib-
rium prices. Hence we obtain the following problem:

maxd(t,) Bp
subject to (6) and (7)

The solution {19 * (t)}:l:0 is called the optimal intensity trajectory. The trajecto-
ries {Z* (t)}:l:0 and {y* ('[)}:1:0 that correspond to it (in accordance with (8)) are
called the optimal input and output trajectories.

Let the angular distance between a semi-positive intensity vector & and the
normalized optimal intensity vector & ON be

2

9 -
d(&,N) =H H—&‘

where 9=y 19, and [F]=1.
i=1

Definition 4. The von Neumann economy is globally stable if for any (arbi-
trarily small) number &> 0 there is such a natural number lg (independent on 7)) that
t, = 2l, implies

d@*@),N)<e for I, <t<t -l,.

Note here, that the longer is the time horizon T = {0, 1, ..., 7 }, the longer is the
interval for which |, <t<t; -1, holds.
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>
0 1 9,

Fig. 2. Turnpike stability of the von Neumann economy in space R?

It has been proved that under assumptions (i) - (51), the von Neumann economy
is globally stable (Czeremnych 1982, Panek 1997, 2000). The convergence of the
optimal intensity trajectory {19 * (t)}?: o to the von Neumann ray N (the turnpike) is
illustrated in Fig. 2.

Similar turnpike properties can be derived for optimal input and output trajecto-
ries. In other words, if we denote:

N*={ x| A >0}
NY ={Ay| A >0}

where, X =3A, y= 9B, then for any number £ > 0 there is such a natural number
Zg (independent on 7)) that

d(z*(t),N)<0 and d(y*(t),N)<e for I, st<t,-I,.

4. Growth equilibrium in the Solow-Shell model.
An application of the optimal control theory

We will proceed now from the maximally disaggregated competitive A-D-McK
economy through the von Neumann partially disaggregated multi-product economy
with a single (global) production space and one (global, production) growth crite-
rion to the maximally aggregated single-product, double factor economy of the
Solow-Shell type. The focus in this Section will be on resolving the issue of the so-
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called optimal distribution of income (between investment and consumption). Our
growth criterion will be the maximization of per capita consumption utility in
a specified time perspective.

As in Section 2, we will operate under assumption that time changes continu-
ously and that the time horizon of the economy is a bounded interval T = [0, ¢,]. We
shall use the following notation (all variables and parameters are now scalars): z(¢)
— employment at time ¢; k(¢), y(¢), c¢(f) — the amounts of investment, income and
consumption in period #; A — the positive rate of population growth; z— the positive
rate of capital depreciation.

Assume that in horizon T:

— employment grows (autonomously) at the rate 4> 0:

z(t) = 2% (10)

— the capital growth is described by the differential equation
d .
3 k(t) =i(t) — uk(t) (11)

with the initial condition

k(0)=k°>0 (12)

— the size of income at time ¢ is a function of capital stock and employment at that
time; this relationship is described by the Cobb-Douglas production function
homogenous of degree 1:

y(t) = ak®(t) z 7 (t) (13)

where €0[0,]] is the income elasticity with respect to capital and 1 — ¢ is the
income elasticity with respect to labour,

— consumption C(t) =0 is a fraction of income net of investment i(t) =0 :

c(t) =y —i(t). (14)

Let 5(7) be an investment rate defined as

t :m‘
=70

The system (10)-(14) can be expressed then in the following equivalent form:
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%k(t) = as(t)k* (t)2° (1) - k(1)

c(t) = all- s(t)) k® (t) 2 (t) - pk(t) (15)
s(t) d[0]]

k(0) =k°

The three functions s(7), k(¢), c(¢) that satisfy system (15) in T are said to de-
scribe the feasible growth process (in the Solow-Shell model). The functions (%),
c(t) are called the feasible trajectories of capital and consumption. The functions
¥(t), i(¢) that correspond to the feasible process are called the feasible trajectories of
income and investment. If the three functions s(¢), k(?), c(?) satisfy system (15),
then the four functions i(?), k(?), y(¢), c(¢) satisfy system (10)-(14) (and vice versa).

Let U: R1 — R; be a continuous and differentiable concave and increasing
global (social) function of consumption utility.

The postulate of maximizing the utility of per capita consumption within time
horizon T, can be expressed now as follows:

%(0%j
U t 16
max‘Tl’ ) (16)
subject to (15)

The feasible process s*(¢), k*(¢), ¢*(f) which constitutes a solution to this prob-
lem is the optimal growth process. Functions £*(¢), ¢*(¢) are called the optimal
trajectories of capital and consumption. The corresponding functions y*(z), i*(¢)
are called the optimal trajectories of income and investment

The solution to problem (16) is obtained on the basis of the optimal control
theory (Panek 1989). Its form depends on the initial level of capital stock K and the
length of horizon T. Further, as an example, we will present a solution to the prob-
lem (16) where the horizon is long and the initial capital stock is relatively low and

satisfies the inequality: .
KO <E:ZO?E‘?
u

In this case, there are such a value of investment rate S0 (0,) and moments of
time T;,T, (0< T, <T, <t1), that the solution to problem (16) is the following
process:
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O 1 for tO[0,1,),
s*(t):E s for tO[r,T,),
H o for tO[r,t],
1
E {[) -d] ere-or sage-o}ie fortofo,my),
k*(t):g ket for t O[1y, T,),
H keshrzgrt fortO[t,, 14],
E 0 for tO[0, 1),
c*(t)=0 all-3)k* ()M  for tO[ry,T,),
O
E aEs(ZO)l—se[/\(l—s)—us]t for tD[Tz,tl],
where:
0\1-¢
q=22)
H+A

The intervals [0,T,),[7;,7,),[T,,T;] are called initial, middle and final phases of
growth. It is interesting that only the length of the middle phase [7;,T,) grows
with the lengthening of the time horizon T.

In the middle phase of growth the rate of investment 5(t) = S[1(0,1) and a steady
growth of capital and consumption at the rate A > 0 is exhibited:

k(t) = ke,
c(t) =ce™, 17
where k =2%(ag/p)**, c =a(l-5)k® (Zo)l_‘E :

One can easily verify that in the middle phase also income and investment grow
at the rate 1.

It must be stressed that, in this process of steady growth the maximum utility of
consumption per capita is achieved at every moment of time ¢. Therefore we refer
to it as the process of maximum steady growth in the Solow-Shell model.

The trajectories of capital, production, consumption and investment in this
maximum process of steady growth play the role of (capital, production, con-
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sumption and investment) turnpikes, toward which optimal trajectories converge
in the middle phase of appropriately long time horizon (Panek 1989). The economy
reaches the turnpike at the end of the initial phase and leaves it at the end phase
(Fig. 3).

Notice, that the Solow-Shell economy is globally stable in the sense of Defini-
tion 4, if the optimal trajectory of intensity is replaced with the optimal capital
(production, consumption, investment) trajectory, while the von Neumann ray is
replaced with a proper turnpike. In its middle phase, the optimal stationary process
is characteristic of an economy in its highest growth equilibrium which may main-
tain for any length of time, thereby maintaining a steady rate of growth and ensur-
ing the maximum utility of consumption at any moment of time.

k(f)

t t } |
T, T, I3 t

Fig. 3. Anillustration of the convergence of optimal capital trajectory
(solution to problem 16) with the capital artery

5. An attempt at a synthesis. The notion of dynamic
o - equilibrium

The modes of economies presented so far from the mathematical point of view are
examples of stationary dynamic systems described with the use of differential equa-
tions of the type

d
— () = F(x()) (18)
dt

(the A-D-McK model), difference inclusions of the type
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AX(t) D(x(t)) (18a)

(the von Neumann model) and non-stationary dynamic systems described by dif-
ferential equations of the type

%x(t) =f (X(t), U(t),t) (18b)

(the Solow-Shell model), in which X(t) = (Xl(t), vee Xn(t)) is the so-called vector
of the internal states of the system, whereas u(t) = (ul(t), . um(t))is the control
vector at moment £.

The generally accepted definition of the state of equilibrium in such a system
reads as follows (Panek 1989): an equilibrium state of the system is such an inter-
nal state X in which the system remains for any interval of time with zero control.

In the stationary systems (18) and (18a), this would be a vector X for which
(respectively)

F(X)=0 (19)
or

00d(X). (20)

In such systems, the environment has no affect on their internal states, so by defini-
tion, their control is zero.

In a non-stationary system (18b), a state of equilibrium defined in such a way
should be a solution X to the equation:

f(x,0,t)=0. Q1)

Such a solution, however, (with the exception of trivial cases), does not exist. The
fact of the matter is that the static equilibrium is typical for stationary systems.

In our case, it is only the first of the three models presented here, i.e. the
A-D-McK model, for which the definition of the state of a (competitive) equilib-
rium is consistent with the definition of the state of a static equilibrium (19) adopted
commonly in the theory of systems and in technical science. The Walrasian notion
of competitive equilibrium, however, is based on a false hypothesis wherein there
are economies that are: (a) stationary, (b) absolutely isolated, capable of function-
ing in complete isolation from the external world and requiring no external input of
energy or information (zero control). Real-life economies are neither stationary nor
absolutely isolated.

Can the theory of economic equilibrium be moved beyond the magic circle of
stationary states? Before I attempt to answer this question, let me determine which
similarily, common features are shared by all three of the equilibrium concepts. In
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all of them, equilibrium indicates the existence of certain economic constants.
Whereas in the competitive equilibrium constants include the size of production
put out by individual producers, the extent of consumer demand and prices. The
constants in von Neumann equilibrium are the production growth rate, the produc-
tion structure, etc. Similarily, technical objects in a state of equilibrium do not
change some of their specific properties. The equilibrium of a pendulum, for in-
stance, is its vertical position at zero velocity (the state of rest).

When discussing equilibria in growth models, we always refer to certain periods
in which equilibria do or do not appear. Equilibria, therefore, are not associated
with a single state of rest assumed by an economy but rather with a certain se-
quence of its states assumed over time, or a process of growth in which the economy
is capable of reproducing certain qualities and properties. In the competitive equi-
librium, we observe the reproduction of such characteristics as the size of produc-
tion output, the extent of demand and the level of prices — the trajectories of these
variables in the competitive equilibrium are constant; the constant in time in the
von Neumann equilibrium is the rate of production growth and production struc-
ture (the production trajectory is an exponential function), etc. Being in equilib-
rium, physical objects also reproduce certain qualities. E.g. the vertical axis of
a ship in the state of equilibrium always points to the center of the Earth while its
angular velocity is zero. The coordinates of its trajectory may be e.g. the geo-
graphic location and the traveling speed.

The collection of qualities or attributes of a system’s equilibrium may change in
time, as a result of the operation of both external factors (adaptation) and the inter-
nal ones (self-adjustment). This is especially true for systems as complex as econo-
mies. A change in the type of the attributes of an equilibrium translates, in fact, into
a change of equilibrium. In the case of complex systems, we should speak of differ-
ent types of equilibria rather than of a single absolute equilibrium. In the light of
the above remarks, we need a definition that would:

— generalize the classical definition of static equilibrium,

— bring relativity into the concept of equilibrium rather than associating it with
a single “state of rest” of a system or ruling out the option of “external” impact
to initiate a certain equilibrium,

— apply equally well to stationary and non-stationary systems.

In assuming that an equilibrium, however defined, should be characterized by
the non-variability of certain attributes of the system, we do not impose the abso-
lute condition whereby a part of such a characteristic is its internal state corre-
sponding to zero control, i.e. a state of equilibrium as used in technical science.
Generally speaking, such constants may include the values of certain functions of
internal conditions and control describing specific qualities of a system. These need
not be a system’s internal states but rather, for example, their derivatives (in the
case of a smooth system, the trajectory of equilibrium states is a linear function) or
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the sum of the values of their coordinates (if such an operation is acceptable), etc.
In addition, it is desirable that a system in the state of equilibrium is characterized
by a “regular” trajectory, which in the case of smooth systems described with the
use of differential equations and inclusions, may translate into e.g. their continuity
and differentiability. The above concepts have been incorporated into the follow-
ing definition:

Definition 5. Let transfomation 0 : R"xR" - R"be a measure, defined on in-
ternal states and controls, of those attributes of the system whose constant levels
are thought of as constituting the symptoms of an equilibrium. We consider a sys-
tem with the control trajectory U(t) and the state trajectory X(t) as remaining in
equilibrium in horizon T if:

(1) o(u, x) # const. on R™x R" (the condition of non-triviality),

(ii) trajectories U(t),X(t) are continuous and differentiable (the conditon of “regu-
larity” of the system trajectories in a o- equilibrium applies to smooth systems
only),

(iii) o (U(t), )_((t)) = const atany moment (period) t I T (the condition of non-vari-
ability of o - attributes of a system in a state of equilibrium).

In absolutely isolated systems described by systems of differential equations
(18) and difference inclusions of type (18a), there is no control U(t). In other
words, a system of type (18) (and respectively (18a)) with trajectory X(t) main-
tains o - equilibrium in the sense of Definition 5, if:

(i) o(0,x)#const.on R"xR",
(ii) trajectory X(t) is continuous and differentiable (in the case of system (18)),
(iii) azo, X(t)) = const for each t T

In practice, the form of transformation o depends on the specific nature of the
problem in question, e.g. the purpose of a study, etc. The classical definition of the state
of a static equilibrium is obtained by assuming that U(t) =0ando (u,x) =X .

In system (4), the price trajectory P(t) in an A-D-McK economy maintaining
a o - equilibrium with the function

ou,p)=p

satisfies the condition p(t)=pfort=0. o

The optimal stationary intensity trajectory { J (t)}tzo in form (9) satisfying sys-
tem (6a) describes the von Neumann economy in a o - equilibrium with the func-
tion

4
o(u,d) :”?,
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where ||19|| = iﬁi .
1=1

Similarily, the optimal stationary process of growth (t),k(t),C(t) in form
(17) describes the Solow-Shell economy maintaining a dynamic o - equilibrium
with the function

o(sk,c) =(s,0k,0.)

where:

Oty =7 () k(t)

Ocrty = ( E A (t)

The above definition of the o - equilibrium applies both to absolutely isolated
systems and to a relatively isolated system. In the light of this definition, there is no
point in searching for an “absolute” economic equilibrium. The main advantage of
the definition, however, is that it allows for extending the notion of equilibrium
beyond the class of simple (technical) stationary systems and placing it in the realm
of complex, non-stationary socio-economic systems.
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