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Abstract. In the paper, basing on the Arrow-Hurwich market, an attempt is made to 
prove that non-stationary economic system is not a real obstacle in investigating of its sta-
bility. It is shown that the classical equilibrium is not condition sine qua non for stability 
of the market.
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1. Introduction

For a long time different attempts have been undertaken in mathematical econo-
mics to go beyond the static Walrasian equilibrium theory. In order to describe the 
real world phenomena more adequately, a long range of dynamic models have been 
elaborated and other alternative concepts of economic equilibria have been propo-
sed (compare the neo-classical concept of balanced growth or the von Neumann 
dynamic equilibrium theory – works [1,2,4,7]). 

Almost all theoretical dynamic models are stationary which, roughly speaking, 
implies that relations between their variables (their structure) remains constant 
over time. In such models equilibrium is still the primary notion, while stability is 
the secondary one. 

The purpose of this paper is to show, based on the Arrow-Hurwich market, that 
non-stationarity of an economic system and hence the lack of its persistent equi-
librium (no matter how understood) is not a real obstacle in defining and investi-
gating stability. In other words, it is demonstrated that existence of equilibrium is 
not the conditio sine qua non for stability of the market.

 Volume 3 Number 1 2003



23

2. The model of the market

We focus our attention on exchange processes which occur on a market at every 
moment t of an infinitely long time horizon T = [0, +∞). The object of exchange 
are n distinct consumer goods. The number of goods is constant in time. Goods are 
demanded or supplied by consumers. Contrary to the stationary Arrow-Hurwich 
model, the number of consumers, as well as the baskets of goods which they deli-
ver to the market change over time.

At moment t, consumer k (k = 1, …, m(t)) buys a basket of goods 
x t x t x tk k

n
k( ) ( ), ..., ( )=( )1 . His outlays for that purpose cannot exceed his potential 

income equal to the value of basket y t y t y tk k
n
k( ) ( ), ..., ( )=( )1  supplied by him at 

this moment. This upper limit of spending does not depend on whether he manages 
to sell the whole supplied basket or not, due to his buffer stock of money, which he 
can use to cover the gap between outlays and receipts from selling goods1.

Prices of goods result from the relations between global supply and global de-
mand and no singular consumer can influence them. As long as global demand for 
a certain good exceeds global supply – the price of this good increases. In the op-
posite case prices decrease.

Taking prices as given, consumers determine their demand in accordance with 
their preferences which can also vary in time. The preference relation of consumer 
k is described by his individual dynamic utility function uk(x, k), implying that the 
same bundle of goods x, considered at two different moments of time, may have 
different utility. 

Transactions take place, generally out of any equilibrium, at every moment of 
time. If there is excess demand for certain goods some consumers are rationed 
and are not able to purchase the whole desired baskets of goods. This, however, 
does not induce them to buy substitutes. They would rather add the not spent part 
of income to their buffer stocks of money. Excess supply causes in turn involun-
tary stocks of unsold commodities which augment the content of baskets offered 
in subsequent periods. 

Let p(t) = (p1(t), …, pn(t)) be a price vector at moment t. Choosing the basket 
of goods at moment t, consumer k solves the following utility maximization prob-
lem2: 

max uk (x, t)

subject to  〈 〉 ≤ ( )p t x I p tk( ), ( ) , (1)
x ≥ 0,

1 We assume that the consumers have such buffer stocks of money in order to present more com-
prehensive description of the functioning of the market. There is no need however to introduce them 
into the model explicitly.

2 See [8].
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where I p t p t y tk k( ) ( ), ( )( ) = 〈 〉 > 0  is the potential income of consumer k from sel-
ling his basket of goods y t x y x yk

i i
i

( ); ,〈 〉 = ∑ .

We assume that the dynamic utility function u R R k m tk n: , , ( )+
+ → =( )1 1 1  sa-

tisfies assumptions (III)-(V) stated in [8]. Then the solution of problem (1) is a con-
tinuous on int Rn+

+2  function φk of prices p, income and time t 3:

 x t u x t p t I p t tk k

p t x I p t
x

k k

k
( ) arg max ( , ) ( ), ( ( ),

( ), ( )
= = ( )

〈 〉≤ ( )
≥0

 . (2) 

Since the potential income I k is a function of prices itself, for simplicity we can 
write 

ϕ k k kp t I p t t f p t t k m t( ), ( ( ), ( ), , ,..., ( )( )= ( ) =( )1 .

Functions f  k have the same properties as functions φk.

Definition 1. 
(i) The sum 

f p t t f p t td k

k

m t

( ), ( ),
( )

( ) = ( )
=

∑
1

is called a vector of total demand for goods at moment t, while the sum 

f t y ts k

k

m t

( ) ( )
( )

=
=

∑
1

is called a vector of total supply of goods at moment t.
(ii) Consequently, the difference 

z p t t f p t t f td s( ), ( ), ( )( )= ( )-

is a vector of excess demand on the market at moment t.

Inequality z p t ti ( ),( )> 0  implies that total demand for good i at moment t ex-
ceeds its total supply. Conversely, inequality z p t ti ( ),( )< 0  reflects a surplus of 
supply over demand for good i. 

3 Ibid., theorem 10. Assumptions (III)-(IV) can be weakened e.g. the declining utility of a basket 
with respect to time is not necessary for the continuity of demand function. 

4 The details of this model are presented in [3].
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Functions f p t td ( ),( ) and z p t t( ),( ) are positively homogenous of degree zero 
with respect to prices, i.e. 

∀ ≥ ∀ > ∀ > =( ) =( )t p f p t f p t z p t z p td d0 0 0, ( , ) ( , ) , ( , ) ( , )   .

We further assume that the excess demand z(p(t), t) function satisfies condi-
tions:

(I)  z C R R Rn n∈ ( { }× → )+ +
1 10( \

(II)  ∀ ≥ ∀ = ⇒( > )t i p z p ti i0 0 0, ( , ) .

The first condition of continuity and differentiability has a formal character. The 
second condition implies that global demand for any good offered for free always 
exceeds global supply.

Denote by σ(t) a scalar function of time satisfying condition

(III)  ∈ →( )+ +C R R0 1 1  and inf ( )σ σt = > 0 .

Let

p t p t p tn( ) ( ), ..., ( )=( )1 ,

  p t p t p tn( ) ( ), ..., ( )=( )1 ,

z p t t z p t t z p t tn( ), ( ), , ..., ( ),( )= ( ) ( )( )1 .

Definition 2. We call the system of differential equations

 p t t z p t t( ) ( ) ( ),= ( )σ  (3)

with a given initial condition 

 p p( )0 00= >  (4)

a non-stationary Arrow-Hurwich model.

Note, that for any moment t, the number σ (t) > 0 is a reaction coefficient of prices 
to disequilibrium between global supply and global demand. 
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Its worth stressing that in comparison to other standard systems of price dynam-
ics, the distinctive feature of system (3) is that it describes adjustment of prices on 
time axis T = [0, +∞) in a non-stationary environment with excess demand func-
tion explicitly dependent on time ( see e.g. [6], chap. 1). 

Further, we assume that ∀ >p0 0  system (3) with initial condition (4) has unique-
ly determined solution on the time axis [0,+∞). We denote it by pT .

Definition 3. We call, defined on semi axis T = [0, +∞) positive solution to the 
system of differential equations (3) with initial condition (4) a (p0, ∞) – a feasible 
trajectory of prices in the non-stationary Arrow-Hurwich market.

Generally, the non-stationary system of equations has no solution pT  satisfying 
condition p t p( ) = = const, which is equivalent to 

∀ ≥ =( )t z p t0 0( , ) .

In other words, prices of equilibrium in their classical meaning as a fixed point 
of system (3) do not exist. Hence, the non-stationary Arrow-Hurwich market is 
never in a permanent equilibrium.

Theorem 1. Under assumptions (I)-(III), every solution pT to the system of diffe-
rential equations (3) with initial condition (1) has the following properties:
(1) ∀ ≥t 0 (p (t) > 0), i.e. it is positive on the whole semi axis [0, +∞),
(2) ∀ ≥t 0 satisfies condition p t z p t t( ), ( ),( ) = 0 (the Walras’ Law)
(3) ∀ ≥t 0 p t p( ) = 0  i.e. it lies on n-dimensional sphere of radius r p= 0 ,

centred at 0.

The proof of part (2) of the above theorem is an exact repetition of the proof 
of lemma 6.1, placed in [5], pp.108-109, while proofs of parts (1) and (3) can be 
found in [6] – lemmas 1.1, 1.2, pp.15-16.

3. Spherical stability of the non-stationary Arrow-Hurwich 
market

In the traditional analysis of a market we assume its stationarity. Investigating a 
stationary market, first of all we attempt to prove the existence of permanent equ-
ilibrium prices and reveal their properties. Only then we try to explore whether the 
market is stable, i.e. if it posses the ability to restore equilibrium. 

We call stationary market globally asymptotically stable if any feasible trajectory 
of prices, starting from any initial price vector p0 > 0, converges to the equilibrium 
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price vector (defined up to the multiplicity of a scalar). In the case of local stability, 
this property of feasible trajectories of prices is bounded only to these trajectories 
which start from an appropriately small neighbourhood of equilibrium. 

Obviously, both concepts of stability cannot be applied to the non-stationary 
markets because of their lack of permanent equilibrium. Therefore, we will intro-
duce a new notion of stability which we call a spherical stability. For that purpose 
consider two feasible trajectories of prices p pT T

1 2,  which are the solutions to the 
differential equations (3) with initial conditions 

p1 (0) = p01 > 0, p2 (0) = p02 > 0.

As a measure of distance ρ between price vectors p1(t), p2(t) we take the Euclidian 
norm: 

ρ p t p t p t p t1 2 1 2( ), ( ) ( ) ( )( )= - .

Definition 4. We call the non-stationary Arrow-Hurwich market spherically asymp-
totically stable if it satisfies the following condition:

∀ > ∀ > = →( )p p p p p t p t01 02 01 02 1 20 0 0, : ( ) ( )-  .

To clarify the meaning of the above definition, remember that in accordance to 
Theorem 1, any feasible trajectory of prices lies on n-dimensional sphere centred 
at 0, whose radius is the initial price vector p0. In view of this, the non-stationary 
Arrow-Hurwich market is spherically asymptotically stable if all (p0, ∞) feasible 
trajectories of prices from the same sphere converge (though – not excluding each 
other – with different speed). 

The next assumption is an adapted to the non-stationary system (3) standard 
assumption that all considered goods are “normal ”, i.e. they are characterised by 
relatively high direct price elasticity of demand and low cross elasticity of demand 
(see e.g.. [5], pp.110-111, assumption (III)):

(IV)  ∀ > ∀ > ∃ > ∀ > ∀ > = =r k p p p p r0 0 0 0 01 2 1 2 : &

  & p p k p p p t p p J p t p p T1 2 1 2 2 1 2 10− ≥ ∀ ∈ ∀ ≥ − − < −( )[ , ] ( ) ( , )( )  ,

where J p t z p t
p n n

( , ) ( , )

( , )

= ∂
∂

⎛

⎝
⎜

⎞

⎠
⎟ is the Jacobi matrix of the excess demand function 

z (p, t).
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Lemma 1. Under assumptions (II), (IV)

∀ > ∀ > ∃ > ∀ > > = =r k p p p p r0 0 0 0 01 2 1 2, : &

& p p k t p z p t p z p t1 2 1 2 2 10− ≥ ∀ ≥ 〈 〉 + 〈 〉 >( ), ( , ) , ( , )  .

Proof. Take r > 0, k > 0 and any two positive price vectors p1, p2 satisfying assump-
tions (II) and (IV). Let 

p(τ) = p1 + (p2 – p1)τ, τ ∈ [0,1]

then  p(0) = p1, p(1) = p2.

Consider a function φ ∈ C1([0,1] → R1) φ (0) = 0 defined as follows 

φ τ τ( ) , ( ), ,= - ( )- ( )p p z p t z p t2 1 1 .

By assumption (IV) 

∃ > ∀ ∈ = − − < −⎛
⎝⎜

⎞
⎠⎟

 

   0 0 1 2 1 2 1[ , ] ( ) ( ) ( ( ), )( )d

d
p p J p t p p T

which implies

φ ε( ) , , ,1 2 1 2 1= - ( )- ( ) <-p p z p t z p t .

We complete the proof noting that by Walras’ Law 

p z p t p z p t1 1 2 20 0, , , ,( ) = ( ) =and .

Theorem 2. Under assumptions (I)-(IV) the Arrow-Hurwich market is spherically 
asymptotically stable.

Proof. Take such two feasible trajectories of prices p pT T
1 2, , satisfying differential 

equations (3), that

p p p p p p r1 01 2 02 01 020 0 0 0( ) , ( ) ,= > = > = = .
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Assume, that p01 ≠ p02, then 

∀ ≥ ≠( )t p t p t0 1 2( ) ( ) .

Define a function

V t p t p t( ) ( ) ( )= -1
2

1 2 2
.

By lemma 1, its derivative 

V t p t p t p t p t( ) ( ) ( ), ( ) ( )= 〈 − − 〉1 2 1 2

satisfies on semi-axis [0, +∞) condition: 

V t t p t z p t t p t z p t t( ) ( ) ( ), ( ( ), ) ( ), ( ( ), )= < >+< >( )<σ 1 2 2 1 0 .

The function V C R R∈ →( )+ +
1 1 1  is decreasing and non-negative on its domain, so

lim ( )V t V= ≥ 0 .

Assume, that V > 0 . Then

∃ > ∀ ≥ − ≥( )k t p t p t k0 0 1 2( ) ( )

and according to the lemma, there is such ε > 0 that 

∀ ≥ < −( )t V t0  ( )  ,

which implies

0 0≤ < − → −∞ → +∞V t V t t( ) ( )  as .

This, however, is not possible. The obtained contradiction completes the proof.
It is worth noticing that the investigation of spherical stability (in the sense of 

definition 3) of a non-stationary market resolves itself into investigation of its sta-
bility on a unit sphere. In fact, take any (p0, ∞) – feasible trajectory of prices p(t), 
satisfying system (3). Let r p= >0 0 . Then 

p t p t
p t r

p t( ) ( )
( )

( )= =
1

,

where p t( )  is a normalized trajectory of prices, p t( ) =1 .
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Consequently 

�� � � �p t
r
p t

r
t z p t t t z p t t( ) ( ) ( ) ( ), ( ) ( ),= = ( )= ( )1 1

σ σ ,

where σ σ( ) ( )t
r

t=
1 . 

The non-stationary market described by vector equation of price dynamics

 �� � �p t t z p t t( ) ( ) ( ),= ( )σ  (5)

with initial condition

   p p p( ) ,0 0 10 0= > =  (6)

is spherically asymptotically stable on n-dimensional sphere of radius r = 1 under 
the same assumptions which guarantee spherical stability of the initial market, gi-
ven by (3) and (4). 

Note that the system (5) is an “equation of motion” of the projection of trajec-
tory of prices from n-dimensional sphere of radius r on a unit sphere.

4. Global stability of the non-stationary market with 
relative prices

According to theorem 2 only trajectories from the same n-dimensional sphere are 
convergent to each over. This excludes convergence of trajectories with different 
length of vectors of initial prices (at t = 0), i.e. these trajectories, satisfying system 
(3), for which p1 (0) = p01 > 0, p2 > 0 and p p01 02¹ . Therefore, one cannot spe-
ak of global asymptotical stability of the non-stationary Arrow-Hurwich market 
with absolute prices. On the other hand, due to the homogeneity of degree zero of 
the excess demand function, we have the same vector of excess demand for any 
given price vector p and its multiplicity. In particular we may consider vector of 
relative prices

p
p

p p
p

p
p

p
n n n

= ⋅ =








 = ( )1 1 11 2, ,..., ,

where ( )p p ,..., pn= −1 1 . Note that the last, n-th good serves here as a numéraire 
which is used to express prices of the remaining goods. 
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Let

, ,z pt z p t1 1( ), ,z p( ) ( , , ),..., ( )tn 11 1= −

be an excess demand function with relative prices.
Further, instead of the non-stationary system (3) with initial condition (4), we 

will consider the following system of n-1 differential equations

 p t(t zp t( ) ( ) ( ), , ) t= 1  (3’)

with an initial condition

 00 0= >p p( )  (4’)

describing dynamics of relative prices in the non-stationary Arrow-Hurwich mar-
ket.

Definition 5. We call, a defined on semi axis T = [0, +∞) positive solution to the 
system of differential equations (3’) with initial condition (4’) a ( ),p0 ∞  – a feasi-
ble trajectory of relative prices in the non-stationary Arrow-Hurwich market.

To explain the relation between trajectories of prices p pT T,  – the solutions of 
systems (3) and (3’) – consider a simple (stationary) model of the Arrow-Hurwich 
market with two goods and the following price dynamics4:

p t A p t
p t

B1
2

1

( ) ( )
( )

= -

  (7)

p t B p t
p t

A2
1

2

( ) ( )
( )

= -

with A, B > 0. 
The model satisfies assumptions (I) – (IV). Also the Wa`lras Law is valid. 

Hence

∀ ≥
⎛

⎝
⎜

⎞

⎠
⎟ + −

⎛

⎝
⎜

⎞

⎠
⎟ =

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟t p t A p t

p t
p B p t

p t
A0 01

1

2
2

1

2

( ) ( )
( )

( )
( )

..

Consider an initial price vector p0 > 0. The feasible trajectory of prices which 
starts from p0 remains on the circle of a radius r p= 0  whose length is the norm of 
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the initial price vector. If t → +∞, then all trajectories from the same circle (starting 
from different initial points lying on that circle) are asymptotically convergent to 
the equilibrium price vector p A B A B r= > =λ λ

λ
( , ), , ,0 , so that they converge 

asymptotically to each other. This convergence is a particular example (on a circle) 
of spherical stability in the sense of definition 4 (see. Figure 1). 

Now, if we take the second good as a numéraire, the system of equations (7) re-
solves itself into a single equation:

p t
p t

= −( )
( )

 A B1

1

which describes the dynamics of price of the first good in terms of units of the se-
cond good. 

Every solution of this equation under any initial condition 1 10 0= >p p( ) 0 , for 
t → +∞ is asymptotically convergent to the point 

A
B

. Obviously, this implies that 
any two positive solutions of this equation converge.

Figure 1. Spherical (on a circle) asymptotic convergence of absolute prices in the 
stationary Arrow-Hurwich market with two goods and equilibrium price vector p  

in the phase space RT
3  (price space RT

2  with added axis of time RT
1)
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Moreover, since p k( ) A
B1 →  we have 

z p t A
p t

B
t1 1

1

1 1 0( ( ), )
( )

= − → ,

= −z p t Bp t A
t2 1 11 0( ( ), ) ( ) → .

The above remarks, although they concern a stationary market, suggest the fol-
lowing definition:

Definition 6. We call the non-stationary Arrow-Hurwich market with relative pri-
ces globally asymptotically stable if any two feasible trajectories of its relative pri-
ces T T

1 2p p,  satisfy condition:

p t− →1 2p t( ) ( ) t0 → +∞as .

The transition from the non-stationary system of n equations of absolute prices 
dynamics (3) to the system of n-1 equations of relative prices dynamics (3’) neces-
sitates reformulation of assumption (IV) which states “weak” negative definiteness 
of the Jacobi matrix of the excess demand function in n-dimensional price space.

Its current version, adapted to system (3’), is the following:

(IV’)  ∀ > ∃ > ∀ > ∀ > − ≥k p p p p k0 0 0 01 2 1 2 :

t p, ,J pp p0 1p t1 2p p∀ ∈ ∀ ≥ − − < −(                                                     )[ , ], ( ) ( )( )p T2 1 2 1  ,

where

J p t z p t
p n n

( , , ) ( , , )

( , )

1 1

1 1

= ∂
∂











− −ˆ
ˆˆˆ . 

Theorem 3. Under assumptions (I)-(III) and (IV’) the non-stationary Arrow-
Hurwich market with relative prices is globally, asymptotically stable.

Proof. The proof is similar to that of theorem 2. Taking any k > 0 and such positi-
ve vectors of prices p p,1 2ˆ ˆ , that p p− ≥ k1 2ˆˆ , we repeat (under assumption (IV’)) 
the proof of lemma 1 and come to the conclusion, that

1 1t p, ,∃ > ∀ ≥ 〈 〉 + 〈 〉 > )(                                                                           0 0 1 2 2 1t p z p z p t, ( ) , ( , , )ˆ ˆ ˆ ˆ ˆ ˆ .
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Take next any two feasible trajectories of prices T Tp p,1 2ˆˆ  – the solutions of system 
(3’) – with initial conditions 

p p0 0= >p p0 0= >p p( ) , ( ) ,1 1 2 02 01 02≠ˆ ˆ ˆ ˆ ˆ ˆ

(if p p01 02= ˆˆ , then p t p t( ) ( )1 2= ˆˆ  for every t ≥ 0).
Define a function

= −V t p t p t( ) ( ) ( )1
2

1 2 2
ˆ ˆ .

Obviously, V (t) ≥ 0 for t ≥ 0. Simultaneously 

1 1〈 〉V t t p z p t t p t z p t t( ) ( ) , ( ( ), , ) ( ), ( ( ), , )= − + 〈 〉 <( 1 2 2 1 0))ˆ ˆ ˆ ˆ ˆ ˆ .

Function V is continuous (and differentiable), non-negative and decreasing on 
semi-axis [0,+∞), hence 

∃ ≥ =( )V V t V
t

0 lim ( ) .

Assume that V > 0, then 

 ∃ > ∀ ≥ − ≥( )k t p t p t k0 0 1 2( ) ( )ˆ ˆ

which in view of assumptions (I) and (IV’) implies that 

∃ > ∀ ≥ ≤ −( ) 0 0t V t ( ) .

Hence V t t( ) ,→ −∞ → +∞as , as, which is impossible. The above contradiction 
leads the proof to its conclusion.
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