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Sensitivity of optimal paths with respect 
to horizon length in a nonstationary 

multisector growth model

Abstract: In the paper we present some results on convergence properties of optimal 
programs of growth in a multisector growth model context. There is no need for convexity 
or monotonicity of production mappings though we impose continuity in product topol-
ogy on intertemporal social utility function. We show that if fi nal stock is sustainable then 
sensitivity and continuity of optimal growth paths hold - both in investment and consump-
tion. We apply our results to a simple multisector Leontief growth model with consump-
tion and discounted utility.
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1. Introduction

The paper investigates two questions stated in optimal growth models: How close 
to each other are optimal programs if planning horizon length changes? Do the fi -
nite horizon optimal programs approximate some infi nite horizon optimal program 
“reasonably” well? If both of these questions have positive answers then it is true 
that if social planner has a properly long but not infi nite planning horizon length 
then the optimal programs do not cause much loss of social utility in the initial pe-
riods, in comparison to optimal programs with a longer planning horizon. In our 
study we use a model in which we do not require any kind of convexity – this is 
not very common in the literature – and using a mixture of methods from papers 
Dutta (1993), Nermuth (1979) we answer positively both of the above questions. 
Section two provides notation. In section three we introduce basic assumptions 
and defi nitions and discuss them. In section four we prove some needed lemmata. 
Section fi ve presents the main results of the paper. In section six we apply our re-
sults to a simple linear growth model.
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2. Notation

Let S lR  denote the nonnegative orthant of l-dimensional real vector space 
Rl equipped with euclidean norm and N = {1, 2,...}. For all t N S St :  and 

S Sc
T

t
T

t: 1 , S Sx
T

c
T: , S S Sc c t t: 1 , S Sx c: . If c S c Sc

T
c  it means 

c c c ct t

T
t t0 0

. Analogously for members of Sx and Sc
T. For x y S x y,  

means xi ≥ yi , i = 1,... , l;  means x ≥ y and x ≠ y.

3. The model

We present a version of the model described in Dutta (1993) and Nermuth (1979). 
Ft represents production mapping whose argument is an input and value is an out-
put available from the given input after a fi xed unit of time. We take the following 
assumptions on F tt : N
(1) Ft : S → 2S is upper hemicontinuous and compact valued;

(2) x S F x Ft t( ) , ( ) { }0 0 ;

(3) ε δ δ ε0 0 0 0: ( ) :x y F x yt ;

(4) ≥ ∈0 0d (x F x y F x yt t≠ ⇒∀ > ∃ ∈ < <0 0 0an ) { } ( ) :ε ε .
The last two assumptions are independent.

Example 1. Let F : R
+
 → 2R+

x F x xR ( ) : { } { }0 .

F fulfi lls conditions 1, 2 and 3 but not 4.

Example 2. Let F : R
+
 → 2R+

x F x
x

x x
R+ ( ) :

{ } [ , ]

[ , ]

0 0 1

0 1 1

F fulfi lls conditions 1, 2 and 3 but not 4.
The class of multifunctions fulfi lling 1–4 is not empty.

Example 3. Let A be a positive square matrix of size n. Let F n n

: R R2

x F x y Ay xR R+
n

+
n( ) : { : }.
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We do not assume any convexity of images of Ft – the sets Ft(S) are even not 
necessarily connected. In papers by Dutta (1993), Nermuth (1979) assumptions on 
Ft guarantee connectedness of images.

The fi rst two assumptions are standard in multisector growth literature. 
Assumptions (3), (4) are fulfi lled for example in the case when technology is pro-
ductive (i.e. from a nonzero input we can get a nonzero output) and a possibility 
of costless waste is assumed. It should be noted that all the above assumptions are 
implied by standard assumptions in multisector growth models (see McKenzie 
(1986)). In the paper by Nermuth (1979) assumption (2) is not taken whereas the 
other assumptions are in at least a stronger form. Although the main proposals in 
papers of Dutta (1993), Nermuth (1979) refer to Brock’s article Brock (1971), they 
do not use assumption (2).

Fix some x S0 . Feasible process starting from a given x
0
 is a sequence 

( , )c x S xSc x such that t c x F xt t t tN 1 1  where ct , xt denote consump-
tion and capital stock inputs in period t respectively. Denote the set of all feasible 
processes by P (in what follows we keep x

0
 fi xed). Futher we assume that Sc  ×  Sx and 

all its subsets (to be defi ned) are equipped with product topology (pointwise conver-
gence topology). We call a vector b S attainable if there exists T N  such that for 
some feasible process ( , )x c P holds xT ≥ b. We call a vector b Sstrongly attain-
able (Nermuth (1993)) if it is attainable and 0 x S T N {0,1,2, }:τ …  

1x x x F x x bt T
T

T t t t T r{xt
τ} , ( ), .We call a vector b S sustainable if it is 

strongly attainable and there exists T T x b b F xtN t : ( ). We denote the 
set of all sustainable vectors by PS. It follows that 0 PS . Defi ne

b Ps t P t c x P x b P Pb t bN ( ) : {( , ) : }, ( ) : ,

P T P T P Pb S S b b
x
T

x
T' ( ) ( ) ( , ), ( , ),... , ' ( ) : .proj 0 0 0 0

A pair (x, c) belongs to P Tb' ( ) if there exists a pair ( ', ') ( )c x P Tb  such that  
c c x x r Tr r r r' , ' , ,...,1  and c x r Tr r 0 1, . We can treat P Pb b, '  as 
mappings from N { } into 2S Sc x. To consider their continuity we need to intro-
duce a topology on their domains. On the set N { } defi ne a base for a topology 
of sets of form (Nermuth (1979))

{t}, t = 0,1,…,

Z t T t TT : { },N: t or N.

It is easy to see that the base defi nes a Hausdorff topology. We also introduce an 
intertemporal social utility function
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V Sc: R,

which is continuous with respect to product topology on Sc. The arguments of V 
are consumption streams c = (c

1
, c

2
,…) where each ct represents consumption in 

period t. It is not very common to use such a form of intertemporal utility function 
in multisector models without any assumption of time separability but our consid-
erations do apply for time additive separable utility models which are standard in 
the optimal growth theory. We stress that domain of V(·) is Sc since Dutta’s exam-
ple 3.1 in Dutta (1993) invalidates our main results on sensitivity and continuity 
of optimal paths if V(·) is not continuous on Sc .

4. Continuity lemmata

Lemma 1. 0 1
1t T x S t T x F xr t

t T
x
T

r, { } : ,..., ,N τ τ ττ
t,...τ ,, .T x1 0 τ ε

Proof. The lemma will be proven by induction with respect to T. Fix any t N 
and T = 1. By assumption 3 for any ε > 0 there exists δ > 0 such that for all 
x S xt t, 0 δ  there exists x S x x F xt t t t t1 1 10, : ( )ε . W.l.o.g. we 
can take x S xt t,0 ε , such that some of it coordinates equals zero. Assume 
that the thesis is true for T. We will show that it holds for T + 1. Suppose that 
x

t

t T
τ τ

 fulfi lls x F x xτ τ τ τ ε1 10( ),  for some ε
1 
>  0. Fix any ε

 
>  0. By tak-

ing ε
1 
>  ε we fi nd that there exists (by assumption 3) x F x xT t T T T1 0( ) : ε  

which proves the lemma.
We fi x x S0 . For a proof of the next lemma see Nermuth (1979).

Lemma 2. Sets Pb(T) are nonempty and compact in product topology for all 
T N { }, b Ps.

Lemma 3. For any fi xed b P Ps b, ( ) is a continuous mapping.

Proof. If b = 0 then T T PN { }: Pb ( ) , and Pb(·) is continuous. Assume 
that b ≠ 0. To prove that Pb(·) is continuous at any t N { } it is suffi cient and 
necessary to show that it is upper hemicontinuous and lower hemicontinuous at any 

t. Since N { } and P are fi rst countable and Hausdorff it is equivalent to show that 

any t t tn n n
n

1
,  and c x c x P tn n

n

n n
b n, , ,

1
 there exists a conver-

gent subsequence (we do not change indices) c x c x P tn n n
b, ( , ) ( ) and for 
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any ( , ) ( )c x P tb  and any t t tn n n
n

1
,  there exist c x P t nn n

b n, , N

such that c x c xn n n, ( , ) in product topology (see Aliprantis and Border 
(1999, p. 534, theorem 16.21)). From the defi nition of the topology on N { } it 
is easily seen that a possible lack of continuity occurs only at t = ∞. Suppose that 

t tn n n
n

1
,  and c x P tn n

n b n,
1

. Since n P t P Pb n b( ) ( )  and 

P is compact then using Cantor diagonal process we can choose a convergent sub-
sequence. Obviously, the limit process belongs to Pb(∞) = P – the upper hemiconti-

nuity follows. Assume now that ( , )c x P, where c c S x x St t c t t c1 1
, , 

t tn n n
n

1
,  and tn+1

 > tn. If t xtN ct 0 then under assump-

tion (2) 0∀ ∈ ≥t N xt . By sustainability of b for every n = 1, 2,… there exists 

the smallest nonnegative integer Tn and a sequence x Sn

t

t T

x
T

n

n n n'τ τ

1 such that 

τ τ τt t T x x x bn n n
n

t T
n
n n

,..., : ' , '  and x F xn n' 'τ τ τ1 1 . It follows that n 

a feasible process ( , )c xn n
 defi ned by

( , ) :

( , )

, '

( , )

,...,

,...,c x

c x

x

b

r t
r t tn n n

n

nτ τ

τ τ

τ0

0

1

1 nn n

n n n

T
r t T t

1

1, ,...

is feasible though it is possibly not in Pb(tn). Let n
0
 = 1 and defi ne recursively nj ,  j  =  1, 

2, 3,… as follows: nj+1
 is the greatest nonnegative integer for which nj−1 + 1 ≤ n ≤ 

nj implies c x P tn n
b n

j j1 1, . We have that sequence c x c xn n n nj j, : , ,1 1

n n n jj j , , ,1 1 1 2… fulfills n c x P tn n
b n,  and c xn n n,

c x( , ).
Suppose now that for the previously fi xed ( , )c x P there exists t N such that 

ct + xt = 0. It implies that t t c xt t' : ' ' 0. Let T
0
 denote the fi rst period such 

that xT0
0 and t T xt0 1 0: . W.l.o.g. we may assume that n t Tn: 0. From 

lemma 1, sustainability of b for any ε > 0 and for each n N we can construct a 

sequence x T
n

T T

t Tn n
'

0 1
 such that τ ετT t x tn

n
n0

11 0, , : '…  and 

τ τ τ τT t T x F x x bn N
n n

t T
n
n n0 11, , ' ' , '…  where for each n Tn is the 

smallest nonnegative number for which it is possible to reach b starting from x t
n
n

' . 
Now fi x ε so small that x F x x tT

n
T T T

n
n' , '

0 0 0 01 1
1ε  (this is possible by assump-

tion 4 and sustainability of b ≠ 0) and c xT T
n

0 01 1 0+ +≥ ≥'  if cT0 1 0 (this can be done 

by the proof of lemma 1). Now defi ne n N a feasible process c xn n,  defi ned 
by
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( )
( )

c x

c x

c x

x

b

T

n n

n

nτ τ

τ τ

τ τ

τ

τ

τ
, :

,

' , '

, '

,

, ,

( ) = ( )
( )

⎧

⎨

⎪
⎪

⎩

⎪
⎪

=

=

0

0

1 0…
T

T t T

t T
n n

n n

0

0

1

2

1

+

= + +

= + +

τ

τ

, ,

, ,

…
…

where c T' 0 1 0, if cT0 1 0 and c c xT T T
n' '

0 0 01 1 1 if cT0 1 0+ ≥ . Proceeding as 
previously we can fi nd numbers nj , nj–1

 < nj and a sequence c x c xn n n, ,  
such that n c x P tn n

b n, .

Lemma 4. P b' ( ) is a continuous mapping.

Proof. As in the previous lemma we have to show continuity only at T = ∞. Suppose 
that t t tn

n
n n, 1 and c x P tn n

b n' , ' ' . By defi nition of c x nn n' , '
c x P t c x c x Tn n

b n
n n n n

n, : ' , ' , , ,τ τ τ τ τ 1… . Since Pb(·) is u.h.c. we can 
choose a convergent subsequence (no change of indices) c x c xn n n, ( , )
Pb . This is convergence in product topology (coordinatewise) so it follows 
that c x c xn n n' , ' ( , ) and since ( , )c x Pb  it follows that ( , ) 'c x P b  
and  is u.h.c. Suppose now that c x P P Pb b', ' '  and tn

n ,
t tn n 1. From lower hemicontinuity of Pb(·) for each n c x P tn n

b n,  and 
c x c xn n n, ', ' . Defi ne now n N

c c c cn n n
t
n
n

' : , , , , , ,1 2 0 0… … ,

x x x xn n n
t
n
n

' : , , , , , ,1 2 0 0… … .

By the above construction we see that n c x P tn n
b n' , ' '  and c xn n n' , '

c x', '  – lower hemicontinuity is proven.

5. Continuity and sensitivity of optimal paths

For each T N  consider an optimization problem

sup 'V c
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c x P Tb', ' ' .

Whenever T N we have to do with fi nding the optimal consumption and utility 
level in a fi nite horizon. If T = ∞ the above problem is to fi nd optimal consumption 
and utility level under infi nite horizon. Let T N

V T V c
c x P Tb

: sup '
', ' '

,

P T c x P T V c V Tb: ', ' ' : ' .

Theorem 1. V P S Sc x: , :N R N 2  are well-defi ned continuous 
function and a u.h.c. mapping respectively.

Proof. From continuity of V(·) and lemma 3 it follows that the family of problems (1) is
well defi ned i.e. the suprema are achieved. The second part of thesis is implied by
Berge’s Maximum Theorem (see Berge (1963, p. 116)).

Since P S Sc x is equipped with the product topology, the product topology 
a base of neighborhoods of every point  is given by a family of sets c x P,

U c x c x PN , , : ', ' :ε

c c x x N Nτ τ τ τε ε τ ε' , ' , , , ,1 0… N .

For a given A P N, ,N ε 0 we defi ne an open neighborhood of A

U A U c xN
c x A

N,
,

,: ,ε ε∪ .

Upper hemicontinuity of P means that for each open set V P P T V,  some 
T N  there exists a neighborhood Z of T  such that P T V T Z, . If 
we fi x N N,ε 0 and defi ne V U PN ,ε  then V is an open neighborhood 
of P  so that there is a neighborhood ZN of ∞ such that T Z P T VT : . 
W.l.o.g. we can assume that Z T TN N Nε ε, ,1… . We get

Corollary 1 (Turnpike Property). For any b PS, every N N and every ε > 0 there 
exists a TN ε N such that for every program c x P T T TN', ' , ε , there 
is a c x P,  such that c c x x Nτ τ τ τε ε τ' , ' , ,1… .

By the above corollary for every nonnegative integer N for every program (c, 
x) which brings maximal utility in a suffi ciently large horizon T there is an infi nte 
horizon optimal program whose fi rst N-period truncation lies as close of optimal 
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T-period program as one wishes – this solves the continuity question (see Dutta 
(1993)).

Corollary 2. If T V T Vn
n

n
nthen .

From the corollary it follows that, independently of fi nite stock b, the optimal utility 
values are close to each other when the planning horizon is suffi ciently long. One 
could show in addition that the convergence is monotonic i.e. V T V T 1  
– this is a simple consequence of the defi nition of sustainable vectors and the form 
of optimization problems (1). However we should be cautious since the fi nite ho-
rizon problem 2 differs slightly from its analogue in the literature.

Example 4. Let V : Sc → R and V(c) = V
1
(c

1
) + V

2
(c

2
, c

3
,...) where Vi (…), i = 1, 2 

are continuous functions. In case of fi nite optimization for T = 1 we have

sup{V
1
(c

1
)  +  V

2
(0,0,…)}

c x P b, ' 1 ,

while its literature counterpart is

sup V (c
1
)

c x P b, ' 1 .

It is easily seen that maximands c c1 0, ,…  of the above problems are the same 
but it may be the case that V c V c V V c1 1 1 1 2 10 0 0 0, , , , ,… …  and even 
V c V c1 1  for all ( , ) ' , , ,c x P T Tb 2 3… . In case of time ad-
ditive separable utility function taking only nonegative values (periodwise) this 
‘anomaly’ vanishes.

Nevertheless the above example does not invalidate any of our results.

Corollary 3. Assume uniqueness of the infi nite horizon optimal program and fi x 
some N N. For suffi ciently large horizons length T N optimal T-period pro-
grams are as close to each other in fi rst N periods as one wishes.

Corollary 3 solves the sensitivity question (see Dutta (1993)).
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6. An application

In this section we will apply our results to a simple dynamic Leontief model. Let A 
be a nonnegative, indecomposable and productive square matrix of size l 1. Defi ne 

x S

F x y S Ay x: :

and let t F Ft0 1, ,… . It is easily seen that assumptions 1-4 are fulfi lled by in-
decomposability and productivity of matrix A. Assume that there is one period util-
ity function U : S → R which is continuous, strictly concave and bounded. Defi ne 
a multiperiod social utility function V : Sc → R:

c S V c U cc
t

t
t

: β
1

,

where β > 1 is a fi xed discount factor. It is easy to see that V(·) is continuous 
in product topology. Fix an initial vector x S0 . A feasible path is e sequence 
c x S St t t c x1

 such that t c x F xt t t t1 1 . A feasible process (c, x) is 
called optimal if V c V c( ) ( ') for any feasible process ( ', ')c x . We see that 0 is a 
sustainable vector in this model. From decomposability and productivity of A it 
follows that there is a unique optimal process if it exists. Now we can use corol-
laries 1-3 to get desired conclusions on sensitivity and continuity characteristics of 
long-term planning. Results of Dutta (1993) and Nermuth (1979) do not apply here 
since their assumptions on production mappings are not fulfi lled2.

7. Conclusions

In the paper we proved under quite general assumptions that for a suffi ciently long 
planning horizon the initial periods of optimal programs do not diverge from each 
other if there is a unique infi nite horizon optimal program - this is valid for con-
sumption and investment programs. We also showed that optimal utilities converge 
independently of the fi nal stock requirement. These results refer to the most com-
mon models used in the literature.

1 For the defi nitions see for example Dasgupta and Mitra (1999) or Nikaido (1968). In the latter 
term ‘productive’ is equivalent to ‘workable’.

2 In Dutta (1993) it is assumed β β0 t x:  and y F xt ( )  then y x ; Nermuth 
(1979) assumed t x S x F xt: ( ).
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