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Non-stationary Leontief-Walras economy

Abstract: An economy’s stability, in the traditional sense, is permanently connected with 
its equilibrium state, since when we speak of a stable (in a local or global sense) economic 
system, we mean its ability to return to equlibrium aft er shocks. Such a meaning of stability 
is senseless in non-stationary economies, since they do not have any invariant states that 
are synonyms of the equilibria. By the example of Leontief-Walras model we shall show that 
non-stationarity of an economy does not exclude its stability, and equlibrium is not a sine 
qua non condition of stable growth.

Keywords: Walrasian system, economic equilibrium, stationary (non-stationary) equi-
librium, stable growth.
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1. Introduction

In discordance with current trends in mathematical economics, in Leontief-Walras 
competitive market model we present below, a special role is played by distinction 
between diff erent kinds of current inputs (for example raw materials, semifi nished 
products, transportation services etc.) and production factors (diff erent generations 
of capital and diff erent kinds of work) in the production process. We assume that 
there are produced n diff erent goods, that are supposed to be consumed or used in 
the production process (as inputs). At any moment some prescribed quantities of 
k production factors are needed in the process of production. 

In Leontief-Walras economy production possibilities are unbounded. But at any 
moment production inputs are limited. Th e available quantity of production fac-
tors and output level (of consummable goods and production factors) depend on 
market prices. Th e prices change according to the classical market mechanism of 
equlibrating supply and demand.

A formal diff erence between our approach and its classical predecessor is as fol-
lows: we reject the assumption of stationarity which results in depriving the economy 
of a competitive equlibrium state (non-stationary dynamical systems do not have 
– in general – the so-called invariant states; see, for example, Panek (2005)).
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2. Leontief-Walras model (A non-stationary version)

We assume that time is continuous and runs through T = [0;∞) half-axe. By 
x(t) = (x1(t), … , xn(t)) we denote the vector of goods produced at the moment t, 
y(t) = (y1(t), … , yk(t)) is the vector of production factors used at the moment t. 
Vector p(t) = (p1(t), … , pn(t))T stands for prices of goods produced at the moment 
t and ν(t) = (ν1(t), … , νk(t))T is the vector of production factors prices; upper index 
T of this vector denotes its transposition.

By A(t) we denote a (n, n) non-negative matrix of production coeffi  cients at t. 
Its element aij(t) measures how much of good j is necessary to produce a unit of 
good i at t, so that to produce an output vector x(t) production inputs z(t) = xA(t) 
are needed.

B(t) denotes a (n, k) non-negative matrix of production factors coeffi  cients at 
time t. Its element bij(t) denotes a necessary input of production factor j to produce 
a unit of good i at the moment t. Vector y(t) = x(t)B(t) is an input of production 
factors which makes it possible to produce output x(t) at t.

Behavior of consumers and producers in the economy is described by three vec-
tor-valued functions
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whose values are demand for goods vector

φ(p, ν, t) = φ1(p1, …, pn, ν1, …, νk, t), …, φn(p1, …, pn, ν1, …, νk, t)),

factors supply vector

ψ (p, ν, t) = (ψ1(p1, …, pn; ν1, …, νk, t), …, ψk(p1, …, pn; ν1, …, νk, t))

at the moment t under goods prices p = (p1, … , pn)T and factors prices ν = (ν1, …, νk)T, 
and average profi t (at time t) vector (dependent on production level x and time t)

ξ(x, t) = (ξ1(x1, t), …, ξn(xn, t))T.

We assume (implicitly) that the global demand (supply) function is a sum of 
demand functions of individual consumers (supply functions of individual produ-
cers). In Leontief-Walras economy we are not interested in the behavior of a par-
ticular consumer (producer).
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We assume that functions φ, ψ, ξ satisfy:
(I) C R R Rn k1 0/{ }  and

p t p t p t, , , , , , ,0 0 0 .

(II) C R R Rn k1 0/{ }  and

p t p t p t, , , , , , ,0 0 0 .

(III) C R Rn1 0/{ }  and
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,

where K r w R w rn k n k
E

2 2( ) :  denotes a closed ball of radius r centered at 
0, E is Euclid norm.

Positive homogeneity of degree 0 of the global demand and supply functions, φ, 
ψ respectively which is stated in conditions (I) and (II) state a well-known fact that 
demand and supply (production) are sensible to the structure of prices and not to 
the absolute level of prices. Condition (III) excludes decrease of the average profi t 
of production of any good to zero-level, at given time t. We take the following as-
sumptions on matrices A(t), B(t).

(IV) A C R0  and
(a) t 0 each row of A(t) contains a positive element,
(b) t t A t A, ( ) ( )0 ,
(c) A(0) is a productive matrix.

(V) B C R0  and
(a) t 0 each column of B(t) contains a positive element,
(b) t t B t B, ( ) ( )0 .

Conditions (IVa), (Va) state that production of any good needs inputs (of goods 
and production factors). Assumptions (IVa), (Vb) express that there is technological 
progress. Condition (IVc) says that the economy is capable to produce more goods 
than it uses as inputs at time t = 0. Together with condition (IVb) it ensures that 
the economy is always productive as a whole (at any moment t ≥ 0 it is possible to 
deliver onto the market more goods than it is used up).

Walras’ Law holds:
(VI) t p x p p t p t x x t0 0, , , , , , , ( , , , , .
According to this law, for any prices the value of global demand equals the value 

of global supply corrected by the average profi t1. Price and production factor dy-

1 It is possible to prove that Walras’ Law holds. We do not do it clarity of presentation.
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namics in horizon [0, ∞) are described by the following non-stationary system of 
diff erential equations2:

 p t t p t t t x t E A t T( ) ( ) ( ), ( ), ( ) ( ) ,                           (1)

 ( ) ( ) ( ) ( ) ( ), ( ),t t x t B t p t t t T,                                (2)

 x t t p t A t p t B t t x t tT ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ), ,                      (3)

where p t p t p t t t t x t xn
T

k
T( ) ( ), , ( ) , ( ) ( ), , ( ) , ( )1 1 11( ), , ( )t x tn , and 

σ(t) is a positive coeffi  cient at time t such that:
(VII) C R R t

0
0 0and inf .

Th e prices of goods and factors in (1) and (2) change in a proportion to excess 
demand. According to (3) production level varies depending on goods prices and 
costs. Positive relations (which allows to earn some extraordinary profi ts) between 
prices and costs encourage the producers to increase  production; otherwise pro-
duction shrinks.

Interpretation of (VII) is similar to interpretation of (III). Existence of a posi-
tive lower bound of function σ stated in (III) assures that prices react to changes 
in supply or demand (equations (2) and (3)) and production is sensitive to prices 
and costs (eq. (3))3.

We assume that system (1)-(3) has a unique solution on half-axis T = [0, ∞) un-
der initial condition4

 p p x x( ) ( ) , ( )0 0 0 0 00 0 0 .                                 (4)

Defi nition 1. We call a solution of system (1)-(3) in T = [0, ∞) under initial condi-
tion (4) a p x0 0 0, , ,  a feasible growth process in non-stationary Leontief-Walras 
economy. Functions: pT , νT , xT we call a (p0, ∞) – feasible trajectory of goods prices, 
(ν0, ∞) – feasible trajectory of factors prices and (x0, ∞) – feasible trajectory of pro-
duction, respectively.

Non-stationary Leontief-Walras economy is never in equlibrium in the classical 
sense, for there is no – in general – such a particular solution p x T, ,  of (1)-(4) 

2 Compare this system to its stationary version presented in Morishima (1964) or Panek 
(2000).

3 Th e scalar function σ(t) in equations (1), (3) could be replaced by diagonal functional matrices 
1

1
1 1( ) ( ) , ,t t diag n , 3

1
3 3( ) ( ) , ,t t diag n , respectively, and in equation (2) we could 

put 2
1
2 2( ) ( ) , ,t t diag n  with positive elements on the diagonal, see a comment following af-

ter lemma 1.
4 Under assumptions (I)-(VII) system (1)-(3) has an unique solution on interval [0, t1), t1 ≤ ∞, 

such that for t = 0 condition (4) holds. We assume a little bit more, namely, that the solution is well-
de_ned on the whole half-axis [0, ∞).
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that for all moments t ≥ 0 it holds p t p t x t( ) , ( ) , ( )const const0 0  
x const 0 and:

 
p t x E A t
xB t p t

E A t p B t x t

, ,

( ) , ,
( ) ( ) ,

0

0
0.

                                      (5)

Nevertheless, the feasible processes have some interesting asymptotical properties, 
for t → ∞, that we consider below. At the end of the point we shall formulate and 
prove a simple lemma places feasible processes on a (2n + k – 1)-dimensional sphere 
whose radius is determined by the initial state of economy triple: p x0 0 0, , .
Lemma 1. Under assumption (VI) (Walras’ Law) every p x0 0 0, , , -feasible growth 
process is contained in a (2n + k)-dimensional sphere centered at 0 with radius 
r p p x x0 0 0 0 0 0 1 2

, , ,
/

.
Proof. Fix some p x0 0 0, , , -feasible growth process p x T, , . Th en t 0:

p t p t t t x t x t

p t t p t t t

( ), ( ) ( ), ( ) ( ), ( )

( ), ( ) ( ), ( ), xx t E A t

t t x t B t p t t t

x

( ) ( )

( ), ( ) ( ) ( ) ( ), ( ),

(( ), ( ) ( ) ( ) ( ) ( ) ( ),

( ) ( ), (

t t E A t p t B t t x t t

t p t p tt t t x t E A t p t

x t B t t x t x t

), ( ), ( ), ( ) ( )

( ), ( ) ( ) ( ), ( ),, ,t 0

so that

p t p t t t x t x t dt

p t p t t

t
( ), ( ) ( ), ( ) ( ), ( )

( ), ( ) (

0

1
2

)), ( ) ( ), ( ) , , ,t x t x t p p x x0 0 0 0 0 0 0.

Th erefore t 0

p t t x t ri
i

n

i
j

k

i
i

n
2

1

2

1

2

1
( ) ( ) ( ) ,

where r p p x x: , , ,
/0 0 0 0 0 0 1 2

. 
It is not diffi  cult to check that if we put in equations (1),(3) some diagonal func-

tional matrices i i
n
it t diag( ) ( ) , ,1 , i = 1, 3 instead of scalar function σ(t) 

and 2
1
2 2( ) ( ) , ,t t diag n  with positive elements on the diagonal, then un-

der (VI) any p x0 0 0, , , -feasible growth process would be located in boundary 
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of an (2n + k)-dimensional elipsoid centered at 0, with radii dj , j = 1, …, 2n + k, 
defi ned as:

d dj i: 1  for j = 1, …, n,

d dn j i: 2  for j = 1, …, k,

d dn k j i: 3  for j = 1, …, n,

where

xpd i i
i

n

j i
j

k

i i
i

: / / /= ( )⎡
⎣

⎤
⎦ + ( )⎡

⎣
⎤
⎦ + ( )⎡

⎣
⎤
⎦

==

0 2 1

1

0 2 2

1

0 2 3σ ν σ σ
==
∑∑∑

1

n

.

3. Local stability

If, in Leontief-Walras economy, one could point at a state of equlibrium p x, ,  sa-
tisfying on T = [0, ∞) conditions (5), then stability (local or global) of the economy 
would imply convergence (local or global) of feasible processes toward equilibrium. 
Since such an equilibrium state – as we asserted – does not exist, then instead of 
classical covergence of (p0, ν0, x0, ∞)-feasible growth processes toward a state of equi-
librium (toward equilibrium prices of goods p and factors  and production level x, 
respectively) we shall investigate convergence of processes toward each other, when 
they start from diff erent states. Th e below defi nition mimics defi nition 2.3.
Defi nition 2. Non-stationary Leontief-Walras economy is called locally layer-wise 
asymptotically stable, when for any pair of p xi i i0 0 0, , , -feasible growth processes, 
i = 1, 2 it holds

p
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Jacobi’s functional matrix of pair of vector-valued functions φ (p, ν, t) and ψ (p, ν, t) 
of variables p R R t Rn k, , . We shall assume:

(VIII)  r d p x p x0 0 0 0 01 1 1 2 2 2, , , , , , ,
p p p t1 2 1 2 0, , , ,

p

x

p

x

r p p d d

p p

T T

E E

E E

1

1

1

2

2

2

1 2 1 2

2 1 T T J p t
p p

t
, , , .2 1

2 1

2 1 1

Under this assumption
p t
pi

, ,
0 for i = 1, …, n

and
p t

j

, ,
0 for j = 1, …, k,

i.e. demand for goods decreases, and factor supply increases when prices grow. So 
that we have to deal with a “normal” economy, where there are valid natural (clas-
sical) reactions of agents facing changes in prices of goods and factors.
Lemma 2. If Jacobi’s functional matrix (6) satisfi es condition (VIII) then

r d p x p x0 0 0 0 01 1 1 2 2 2, , , , , , ,

p

x

p

x

r p p d d

p p

T T

E E

E E

1

1

1

2

2

2

1 2 1 2

1, 22 2 1 2 2 2 1 1 2 1 1

1
, , , , , , , , , , , .t p t p p t p t

t
Proof. Fix any numbers r > 0, d > 0. Let us choose such vectors p i, ν i, x i > 0, i = 1, 2 
satisfying

p

x

p

x

r p p d d
T T

E E

E E

1

1

1

2

2

2

1 2 1 2 .
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Denote
p p p p( ) 1 2 1 ,

( ) 1 2 1 ,
and (for any fi xed t ≥ 0):

( , ) , ( ), ( ), , ,t p p p t p t2 1 1 1

, ( ), ( ),p t2 1 p t1 1, , ,

where 0 1, . Th en t t C0 0 11, ,  and

p p p p t( ) , ( ) , ( ) , ( ) , ( , )0 1 0 1 0 01 2 1 2

, ( ), ( ),t J p tT ,

where 
p p2 1

2 1 . According to assumption (VIII) there exists a number ε such 
that

0 1 0
1

, , ( ), ( ),t J p t
t

T .

Since ( , ) , ( , )0 0
1

t t
t

 then

( , ) , , , , ,1 2 1 2 2 1 1t p p p t p t

, , , ,2 1 2 2 1 1p t p ,,t
t 1

.

Th e proof is completed because it follows from Walras’ Law (VI) that

p p t p t x x t ii i i i i i, , , , , , , ( , ) , ,1 2.

Th e condition of lengths equality of initial vectors

 w
p

x

w
p

x
T T

1

1

1

1

2

2

2

2

,                                              (7)

in assumption (VIII) is obvious with respect to lemma 1: only processes contained 
in the very same (2n + k)-dimensional sphere can converge to each other. Processes 
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for which initial states w1, w2 do not belong to the same sphere will never reach a 
distance smaller than r r1 2 0, where r w ii i

E
, ,1 2.

In fact, theorem 1 asserts that in non-stationary Leontief-Walras economy growth 
processes converge to each other. While proving it, the following lemma plays an 
important role:
Lemma 3. Under all assumptions

r d p x p x t0 0 0 0 0 01 1 1 2 2 2, , , , , , ,

w w r p p d d x x d

p p t
E E E E E

1 2 1 2 1 2 1 2

1 2 2 1, , , , pp t

p p t p t

x x t x x

2 2

2 1 1 2 1 1

1 2 2 1

, ,

, , , , , ,

, , , ,, ,t
t 1

where vectors w1, w2 are of form (7).

Proof. Th e proof of this lemma is similar to proof of lemma 2. For all [ , ]0 1  de-
note:

p p p p

x x x x

( ) ,

( ) ,

( ) ,

1 2 1

1 2 1

1 2 1

and

( , ) , ( ), ( ), , ,

, ( ), ( ),

t p p p t p t

p t

2 1 1 1

2 1 p t x x x t x t1 1 2 1 1, , , ( ), , .

Th en t t C t0 0 1 0 01, [ , ], ( , )  and

( , ) ( ), ( ), ( ),t J p x tT ,

where

p p

x x
T T

2 1

2 1

2 1

,
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and

J p x t

p t
p

p t E A t

p t
p

T

( , , , )

( , , ) ( , , ) ( )

( , , ) (( , , )

( ) ( ) ( , )
(

p t B t

E A t B t x t
x

T

n2 kk n k, )2

is Jacobi’s functional matrix of the right-hand-side of system (1)-(3). Here and on

( , )

,

,

x t
x

x t
x

x t
x

n n

n

1 1

1

0

0

.

It can be easily seen that
( , ) ( ), ( ), ( , ) | ( )

t J p t x x x t
x

x xT
x x

T2 1 2 1 ,

where functional matrix J(p, ν, t) is given by (6) and 
p p2 1

2 1
.

Fix any numbers r > 0, d > 0. Under (VIII) there exists such a number ε' > 0 that 
p x p x t1 1 1 2 2 20 0 0, , , , , ,

from equalities

w
p

x

w
p

x

r
E

E

E

E

T T

1

1

1

1

2

2

2

2

and condition

p p d d
E E

1 2 2or 1 ,

it follows

λ τ ν τ λ
εT J p t

t
( ), ( ), '( ) < −

+1
. (*)

Condition (*) holds for [ , ],0 1 0t . Under assumption (III)
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w K r t i
x t
x t

n k i i

i

i
r

2 0
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p

xT
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+ τ         , ( ), [ , ]w w K rn k1 2 2 0 1

x x d
E

1 2
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−( ) −( ) >
+=

x x x t
x

x x
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x x x x
tx x

T r T12121212 1
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ζ
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w
p

x
T T

r

n

1

1

1

1

2

2

2

2

1 0

0

, , .

Let ε ε ε= { }min ', " . From (*), (**) it follows:

[ , ], ( , )0 1 0
1

t t
t

,

if p p d
E

1 2  or 1 2
E

d or x x d
E

1 2 .
Since ( , )0 0t  then

( , ) , , , , , , , ,1 2 1 2 2 1 1 2 1 2 2t p p p t p t p t

– ,1 1p ,, , , ,t x x x t x t
t

2 1 2 1

1
.

Further on, from Walras’ Law – aft er some simple transformations – the thesis fol-
lows.  
Th eorem 1. Under conditions (I)-(VII) non-stationary Leontief-Walras economy is 
layerwise asymptotically stable.

Proof. Fix a pair of p xi i i0 0 0, , , -feasible growth processes, i = 1, 2 , such that

p

x

p

x

r
T T

E E

01

01

01

02

02

02

0.

From lemma 1 it follows that the processes are contained in a sphere with radius r 
centered at 0. If p p x x01 02 01 02 01 02, and  then

t p t p t t t x t x t0 1 2 1 2 1 2( ) ( ), ( ) ( ), ( ) ( ) .
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If, on the other hand p p x x01 02 01 02 01 02, then

t p t p t t t x t x t0 1 2 1 2 1 2( ) ( ) ( ) ( ) ( ) ( ) .

Defi ne

V t p t p t p t p t t t t t( ) : ( ) ( ), ( ) ( ) ( ) ( ), ( ) ( )1
2

2 1 2 1 2 1 2 1

x2 (( ) ( ), ( ) ( )t x t x t x t1 2 1

1
2

2 1 2 2 1 2 2 1 2p t p t t t x t x t
E E E

( ) ( ) ( ) ( ) ( ) ( ) .

Of course V C R1 0[ , )  and

V t t t p t t t t p t t t( ) ( ) ( ), ( ), ( ), ( ), ( ), ( ),1 2 2 2 1 1

x1(( ), ( ), ( ), ( ),t x t t x t x t t2 2 1

( ), ( ), ( ),p t p t t t p1 2 2 2 (( ), ( ), ( ),t p t t t1 1 0.

Suppose that there exists such a number d > 0 that

t p t p t d t t d x t x t d
E E E

0 2 1 2 2 1 2 2 1 2( ) ( ) ( ) ( ) ( ) ( ) .

Th en, under assumptions (I)-(VIII), in the light of lemma 3, there exists a num-
ber ε > 0

t V t
t

0
1

( ) ,

so that 0 0 1V t V t( ) ( ) ln( ) , when t , which is impossible. Th e 
thesis has been proven.  

4. Global stability of non-stationary Leontief-Walras 
economy with relative prices

Going from absolute prices of goods and factors p p pn
T

n
T

1 1, , , , ,  
to a relative prices system, wherein prices of all goods and factors are expressed in 
terms of k-th factor’s unit k 1  and denoting
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ˆ( ) ( ), , ( )ν ν νt t tk= …( )−1 1 ,

ˆ , ˆ, , , , , , , , , , , , , , ,ψ ν ψ ν ν ψ ν νp t p p t p pn k n n k( ) = … …( ) … … … −−1 1 1 1 1 1 1 ,,,1 1 t( ))(

ˆ( )

( ) ( )
( ) ( )

( ) ( )

B t

b t b t
b t b t

b t b t

k

k

n nk

=

…
…

…

⎛

⎝

⎢
⎢
⎢
⎢

−

−

−

11 1 1

21 2 1

1 1
⎢

⎞

⎠

⎟
⎟
⎟
⎟

we replace dynamic system (1)-(3) of 2n + k equations with the following 
2n + k – 1 equations:

 p t t p t t t x t E A t
T

( ) ( ) ( ), ˆ( ), , ( ) ( )= ( )− −( )⎡⎣ ⎤⎦σ ϕ ν 1 ,                          (8)

 ν σ ψ ν( ) ( ) ( ) ˆ( ) ˆ ( ), ˆ( ), ,t t x t B t p t t t
T

= − ( )⎡⎣ ⎤⎦1 ,                               (9)

 x t t p t A t p t B t t b t x t tkT ( ) ( ) ( ) ( ) ( ) ˆ( )ˆ( ) ( ) ( ),= − − − − ( )⎡⎣ ⎤⎦σ ν ζ ,              (10)

where bk(t) stands for k-th column of matrix B(t) from (1)-(3), so that 
B t B t b tk( ) ˆ( ), ( )= ⎡⎣ ⎤⎦. Similarily, as in defi nition 1, a positive solution of system 
(8)-(10), defi ned on [0, ∞) under initial condition

p p x x( ) , ˆ( ) ˆ , ( )0 0 0 0 0 00 0 0= > = > = >ν ν

is called p x0 0 0, ˆ , ,ν ∞( )-feasible growth processes in a non-stationary Leontief-Walras 
economy with relative prices and is denoted by p x

T
, ˆ ,ν( ) .

Defi nition 3. Non-stationary Leontief-Walras economy with relative prices is 
called globally asymptotically stable, when ∀ > > >p xi i i0 0 00 0 0, ˆ ,ν  and any pair of 
p xi i i0 0 0, , , -feasible growth processes, i = 1, 2, satisfi es

p t p t
E

t1 2 0( ) ( ) ,

ˆ ( ) ˆ ( )ν ν1 2 0t t
E

t− −−− → ,

x t x t
E

t1 2 0( ) ( ) .

An equivalent of assumption (VIII) is now (VIII’)
(VIII’)  ∀ > ∃ > ∀ > ∀ > ∀ ∈⎡⎣ ⎤⎦ ∀ ∈d p x p x p p p0 0 0 01 1 1 2 2 2 1 2 1 2, ˆ , , , , , ˆ , ˆˆ νννννε ⎡⎣ ⎤⎦ ∀ ≥, t 0

p p d d J p t
tEE

T1 2 1 2

1
− ≥ ∨ − ≥ ⇒ ( ) < −

+
⎛
⎝⎜

⎞
⎠⎟

ˆ ˆ , ˆ,ν ν λ ν λ
ε , where
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J p t

p t
p

p t

p t
p

p
( , , )

, ˆ , , , ˆ , ,
ˆ

ˆ , ˆ, , ˆ
=

∂ ( )
∂

∂ ( )
∂

−
∂ ( )

∂
∂

ϕ ν ϕ ν

ν̂
ν

ψ ν ψ

1 1

1 , ˆ, ,
ˆ

,

( , )

ν
ν

1

1 1

t

n k n k

( )
∂

⎛

⎝

⎜
⎜
⎜
⎜⎜

⎞

⎠

⎥
⎥
⎥
⎥⎥

+ − + −

ˆ ˆν ν

2 1

2 1

p p−

−

⎛

⎝
⎜⎜

⎞

⎠
⎥⎥λ = .

Interpretation of (VIII’) is similar to interpretation of (VIII).
Lemma 4. Under assumptions (I)-(VII), (VIII’)

∀ > ∃ > ∀ > ∀ >d p x p x' , ˆ , , , ˆ ,0 0 0 01 1 1 2 2 2ε ν ν ,

∀ ≥ − ≥ ∨ − ≥ ∨ − ≥ ⇒t p p d d x x d
EEE

0 1 2 1 2 1 2ˆ      ν̂ν⎛
⎝⎜

⇒ ( ) −p p t p11 2 2 1 2, , ˆ , , ˆ ,ψ̂ννϕ , ˆ , , , , ˆ , ,ν ϕ ν2 2 1 11 1t p p t( ) + ( ) −

ˆ , ˆ , ˆ , , , ,ν ψ ν ζ2 1 1 1 21p t x x t− ( ) − ( ) −− ( ) >
+

⎞
⎠⎟

x x t
t

2 1

1
, ,ζ

ε .

We omit proof of this lemma, since it runs in a way analogous to proofs of lemmas 
2, 3. By lemma 4 and using proof of theorem 1 we can easily prove theorem 2.

Th eorem 2. Under assumptions (I)-(VII), (VIII’) non-stationary Leontief-Walras 
economy is globally asymptotically stable.
Proof. Fix any two feasible growth processes p x p x

T T
1 1 1 2 2 2, ˆ , , , ˆ ,ν ν( ) ( )  satisfying (re-

spectively) initial conditions

p pi i( )0 00 ,
ˆ ˆν ν0 0 0i i= > ,

x xi i( )0 00 ,

i T1 2 0, ; [ , ) . If p p01 02, ˆ ˆν ν01 02=  and p p01 02 then

t p t p t t t x t x t0 1 2 1 2 1 2( ) ( ), ( ) ( ), ( ) ( ) .

Suppose that p p x x01 02 01 02 01 02 . Th en

t p t p t t t x t x t0 1 2 1 2 1 2( ) ( ) ( ) ( ) ( ) ( ) .

Defi ne

V t p t p t p t p t t t t t( ) : ( ) ( ), ( ) ( ) ˆ ( ) ˆ ( ), ˆ ( ) ˆ (= − − + − −1
2

2 1 2 1 2 1 2 1ν ν ν ν )) +⎡⎣
( ) ( ), ( ) ( )+ − − ⎤⎦x t x t x t x t2 1 2 1 .
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Under the assumptions V C R1  and
V t t t p t t t t p t t( ) ˆ ( ), ˆ ( ), ˆ ( ), ˆ ( ), ˆ ( ), ˆ ( )= ( ) +σ ν ψ ν ν ψ ν1 2 2 2 1 1 ,,t( ) +⎡⎣( )

,)(,)(,)(,)(x t x t t x t x t t+ ( ) + ( ) −1 2 2 1ζ ζ

,)(,)( ˆ (p t p t t− 1 2 2ϕ ν )), ( ), ( ), ˆ ( ),t p t p t t t( ) − ( ) ⎤⎦2 1 1ϕ ν < 0.

If the economy is not globally asymptotically stable, then there exist two feasible 
processes p x p x

T T
1 1 1 2 2 2, ˆ , , , ˆ ,ν ν( ) ( )  such that

t p t p t d t t d x t x t d
E E E

0 2 1 2 2 1 2 2 1 2( ) ( ) ( ) ( ) ( ) ( ) ,

for a number d > 0. Th en, by assumptions (VII), (VIII’), there exists a number ε > 0 
such that

t V t
t

0
1

( ) ,

and therefore lim ( )t V t  – contradiction.  

5. Conclusions

In the related literature, stability notion is strongly identifi ed with equilibrium. Th e 
paper shows that stable growth of a non-stationary economy – which in fact we 
deal with in reality – does not demand convergence toward an equilibrium state. 
Moreover, “equilibrium problem” ceases to exist in its traditional sense, which does 
not preclude examining stability properties of competitive economy functioning 
under classical market mechanism.
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