
21

Wiesław ŁUCZYŃSKI
Poznań University of Economics

Th e long memory dynamics of the market 
quotations of selected Stock Companies 

and Warsaw Stock Index1

Abstract. Th e analysis of the results obtained allows to establish the short memory of 
the stationary time series deprived of the stochastic trend, the permanent memory of the 
non stationary data of the Hodrick-Prescott trend and the declining memory of the non 
stationary time series of the  quotation dynamics of the stock companies. As results from 
the research,  the spectral analysis of the stock quotations does not reveal the fl uctuations 
in the business conditions. Th e fl uctuations with the period of about 34, 20 and 14 sessions 
with the quotations of particular companies and WIG correspond to the periods 8-10, 5-6 
and 3-4 weeks.
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From the empirical point of view the long memory is associated with persistence 
of the observed phenomena. Th is phenomenon was initially noted down not in 
economics but in such domains as hydrology, geophysics, climatology, and in oth-
er natural sciences2. Th e weakening self correlation of the time series has attracted 
the attention of the researchers for a long time. Th e works of J. Beran, R.T. Baillie, 
P. Doukham, G. Oppenheim, M.S. Taqqu and P.M. Robinson3 include the compre-

1 I am very much indebted to Aurelia Łuczyński, who helped me to solve technical problems re-
lated to my work.

2 Th e long memory researches were initiated about the year 1907 by H. E. Hurst, a hydrologist 
[Hurst, 1951]. H.E.Hurst discovered that the most natural systems do not meet the conditions con-
nected with the at random missing i.e. the trend associated with the information disturbance. Th e re-
action of these systems to the new information is diff erentiated, which is connected with its diff erent 
absorption (dependings on whether the new information confi rms the earlier observations or not e.g. 
tendency – trend). E. E. Peters developed the results obtained by Hurst and added the time lines as-
sociated with the economic processes, particularly with the capital markets [Peters,1997, s. 64-119]; 
and [Mandelbrot, Wallis, 1968], [Mandelbrot, 1972], [McLeod, Hipel, 1978].

3 See [Beran, 1994], [Baillie, 1996], [Th eory and applications of long-range dependence, 2003], 
[Robinson, 1994, 2003].
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hensive review of the long memory processes and the review of the fractional inte-
gration. However, the recent scientifi c research refers to nonstationarity, long mem-
ory and nonlinearity time series4. Th e starting point of the research on the fraction-
ally integrated processes is the fact that very oft en the economic and fi nancial time 
series are not integrated processes, either of order zero or of order d = 1: I(0), I(1). 
Autocorrelation appears in these series aft er a long time. However, in a given long 
period the autocorrelation disappears constantly (in literature this phenomenon is 
known as the “hyperbolic decay”. [Banerjee, Urga, 2004, p. 15]. Th e typical feature of 
the long memory processes is “overdiff erencing” aft er obtaining the fi rst time series 
diff erences containing the observations of these processes. In such conditions the 
integrated process of order ‘d’ is defi ned as fractional or partial: d is the non integer 
number and it takes the values from the range (–∞, 0) for the memory-less or the 
weak memory processes; (0, 1

2) for the stationary processes with long memory and 
from the range (1

2, +∞) for nonstationary processes with long memory.
Th e processes with long memory can be presented in the linear- time dimension 

or in the frequency dimension. In the linear-time dimension the long memory is 
presented as a hyperbolic decay of the autocorrelation function mentioned above. 
As the autocorrelation function covers the long time motions (lags) illustrating (on 
the graphs) the long memory of the processes with not a big number of observa-
tions is impossible. However, in the frequency dimension, the same information 
presented in the spectral form covers all the fl uctuations within the range (0, π). 
Th erefore, using the spectral analysis allows us to illustrate on the graph the long 
memory processes, independently of how long period the statistic data cover. Th e 
defi nitions of the long memory process are diff erentiated depending on the time 
dimension assumed in the researches.

In the linear-time dimension, the stationary, discrete time series includes the 
long dependences (or the long memory), if its correlation function ρj for the delay 
(lag) j, satisfi es the condition:

 lim
j

j

c j→∞ − = 1,                                                       (1) 

for 0 < cρ < ∞ and 0 < α < 1.
Th e defi nition given implies that the dependence between two optional ob-

servations gradually disappears simultaneously with extending the lag to infi nity. 
And a more general defi nition suggested by A.I.McLeod and K.W.Hipel [McLeod, 
Hipel, 1978]:

4 See Journal of Econometrics by J. Davidson and T.T. Terasvirt wholly dedicated to long memory 
and non linear time serious [Long memory and nonlinear time series, 2002]. 
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 lim
j j

j n

n

→∞ =−
∑ = ∞ ,                                                     (2)

where n is the number of observations. 
Both defi nitions (1) and (2) refer to the nonstationary processes. However their 

autocorrelation functions cannot decline too rapidly. 
Another defi nition of the long memory is associated with the spectral density 

function. Th e process of the spectral density f is endued with the long memory if

 lim ( )
→∞ − =f

c f

1,                                                     (3)

for a stable 0 < cρ < ∞ and 0 < β < 1.
Th is means that the value of the spectral density function for the zero frequen-

cy is infi nite. Equation (3) is not identical to equation (2), but they are inter-con-
nected [Beran, 1994]. If 1

2 < H < 1 then α = 2 – 2H, and β = 2H – 1. H is defi ned as 
the Hurst coeffi  cient or indicator. It was defi ned by H.E. Hurst [Hurst, 1951] and 
represents the classical parameter which allows us to establish the presence of the 
long memory in the processes being searched. Th e long memory of the process oc-
curs if the Hurst coeffi  cient 1

2 < H < 1 [Yong,1974], [Robinson, 1995]. Whereas for 
–1 < β < 0 (0 < H < 1

2) the process is denoted by the ‘minus memory’ or the anti 
persistence (if the changes of the time series direction are more frequent than in 
the random series5).

In the analysis of the dynamics of the economic processes, when considering their 
numerous aspects, diff erent tools should be applied. To such tools belong, among 
others, the spectral analysis, the rescaled range analysis and the wavelets analysis. 
Each of them treats to some extent diff erently the data from the observation of the 
researched processes. To obtain the time series with defi ned features they are sub-
ject to the initial procedure, the so-called prewhitening procedure. Th e most de-
manding in this respect is the spectral analysis. Moreover, reliability of the results 
depends directly proportionally on the dimension of the observation series and on 
the length of the period which they cover. It is obvious that the change of the condi-
tions in which the researched processes are running, put under the question mark 
homogeneity of the collected observation series. Th e methods of their collecting 
and the statistical processing also change. As opposed to the uniform mathemati-
cal objects or (although inconsiderably) – physical objects, the economic systems 
are characterized by irreversibility of the time series. Th ese systems assume the 
forms changeable in time. We should not forget it when we interpret the results of 

5 If in the previous period the system assumed high values, it is presumable that in the next pe-
riod the turn will come and the system will accept the low values and vice versa. Such a system is de-
fi ned as a pink noise or a noise 1/f [Peters, 1997, s. 242]. 
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research into the dynamics of economic processes and when we attempt to predict 
their behaviour in the future. 

Th e spectral analysis was carried out for the time series describing the quota-
tion dynamics of the following companies Kable, Krosno,Próchnik and the WIG 
aggregation Th e stationarity of the researched time series was obtained by removing 
the stochastic Hodrick-Prescot trend from the data. Th e quotation data enfolded 
the period from 16 April 1991 till 27 March 2006. Th e dynamics indexes were ob-
tained by treating the quotation level from the beginning of the period as the ba-
sis. Subsequently, the type of stationary series was established, by using the (ADF), 
Augmented Dickey-Fuller Test and the test by Kwiatkowski, Philips, Schmidt and 
Shin (KPSS).

At the initial stage of the development the Warsaw Stock Exchange operated once, 
twice or three times a week in the uniform system of the day course (the so-called 
fi xing). From 3rd October 1994 the stock sessions started to take place every week-
days, and as before in the fi xing system. Th is is, among others, the reason of such a 
diff erentiated number of observations in the time series quotations of Kable (2617 
data), Krosno (2740 data), Próchnik (2618 data) and WIG (3289 data). Such big 
diff erentiation of the frequency of the quotations can have an infl uence on diff er-
entiation of delays in spreading the information signals and what is more, period-
icity of the autocorrelation associations and diff erentiation of the time series vari-
ability in the researched period. However, the diff erentiation given should not have 
a bearing on the cyclical structure of the long term cyclical fl uctuations (associated 
with the long memory processes). Th e most important here is not the frequency of 
sampling of the survey process but the length of the time period in which it runs 
(in this case almost 15 years). To obtain reliable results of the harmonic analysis of 
the time series, the research period should not be shorter than 10 multiplied lengths 
of the longest fl uctuation period. So, for example, to verify the hypothesis about the 
3 year fl uctuations in the researched time series, such a series should not be shorter 
than 30 years. However, the frequency of measuring (sampling) of the researched 
process is less important here. Th e rising frequency of sampling results in increased 
disturbances of the information signals, and consequently, in more complex statis-
tical processing (the so-called prewhitening).

Th e Augmented Dickey-Fuller Test is used to evaluate occurrence of nonstation-
arity in a variance of the researched process. Th ree types of regression models are 
used: the model without the intercept and the trend (4), the model with the inter-
cept (5) and the model with the intercept and the trend (6).

 ΔYt = gYt–1 + ut                                                      (4)

 ΔYt = α + gYt–1 + ut                                                  (5)
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 ΔYt = α + bT + gYt–1 + ut .                                             (6)

Th e zero hypothesis H0 says that, when g=0, i.e. the researched series (process) 
is nonstationary (the unit root exists, the accumulation or integration of the pro-
cess occurs). However, the alternative hypothesis H1 says that the series (process) 
is stationary, i.e. g<0 (the unit root does not exist, the accumulation or integration 
of the process do not occur). In our case models (5) and (6) are tested. Th e aim is 
to establish the type of stationarity of the researched series. Depending on whether 
the series are diff erence stationary or trend stationary, diff erent procedures of re-
moving non-stationarity are used [Gajda, 2004, pp. 149-158; Kufel, 2004, pp. 68-70; 
Gruszczyński, Kluza, Winek, 2003, pp. 159-164]. Nonstationarity can be brought 
into the process by the deterministic trend and/or by the stochastic trend. Th e dif-
ference stationary processes include the deterministic trend or the stochastic trend, 
whereas the trend stationary processes include exclusively the deterministic trend. 
Th e obtained results of testing the time series prove that we deal with the diff erence 
stationary phenomenon.

Th e results of the unit root test of the quotations dynamics of Kable, Krosno, 
Próchnik and WIG are as follows6:

KBL_dyn;ADF tests (T=2617, Constant;5%=-2.86 1%=-3.44)
D-lag t-adf beta Y_1 sigma AIC

0 -2.386 0.99585 18.82 5.870
KBL_dyn:ADF tests (T=2617, Constant+Trend;5%=-3.41 1%=-3.97)
D-lag  t-adf beta Y_1 sigma AIC

0  -2.498 0.99560 18.82 5.871
KR_dyn:ADF tests (T=2740,Constant;5%=-2.86 1%=-3.44)

D-lag  t-adf beta Y_1 sigma AIC
0  -1.99 0.99710 41.84 7.469

KR_dyn:ADF tests (T=2740, Constant + Trend; 5%=-3.41 1%=-3.97)
D-lag t-adf beta Y 1 sigma AIC

0 -1.727 0.99716 41.85 7.469
PR_dyn:ADF tests (T=2618, Constant;5%=-2.86 1%=-3.44)

D-lag  t-adf beta Y 1 sigma AIC
0 -1.814 0.99744  21.65 6,151

PR_dyn:ADF tests (T=2618, Constant+Trend; 5%=-3.41 1%=-3.97)
D-lag  t-adf beta Y 1 sigma AIC

0 -2.541 0.99560 21.64 6.151
WIG_dyn: ADF tests (T=3289, Constant; 5%=-2.86 1%=-3.44)

D-lag  t-adf beta Y_1 sigma AIC
0 0.5439 1.0003 27.37 6.620

WIG_dyn: ADF tests (T=3289, Constant+Trend; 5%=3.41 1%=-3.97)
D-lag  t-adf beta Y_1 sigma AIC

0 -0.5890 0.99934 7.37 6.620

6 Th e testing was carried out with the help of module PcGive 10.0 – GiveWin 2 Educational – Single-
User. Identical results were obtained in the GRETL programme (v. 1.5.1.) and EasyReg International 
(March, 12 2006).
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Th e values of t-adf statistics do not allow us to reject the zero hypothesis about non-
stationarity of the quotation dynamics series of the Stock Companies and WIG. 
However, it is more diffi  cult to reject this hypothesis (except for the dynamics of 
Próchnik quotations) regarding the model which includes the intercept together 
with the trend, this would prove that the researched processes are stationary not 
towards the deterministic trend but towards diff erence (and the stochastic trend). 
Removing the undesired nonstationarity would in this case demand removing the 
stochastic trend. A similar conclusion was drawn from the research carried out by 
the author in 1998 [Łuczyński, 1998, p. 642], although the research included a com-
paratively short period of the quotations and more unstable (than now) conditions 
for the companies and the economy. Predicting the diff erence stationary series ((y) 
is more diffi  cult because the consequences of the disturbances do not become weak-
er in time (as when predicting the trend stationary series i.e. stationary towards the 
deterministic trend) but they ”remain permanently “frozen into” the future values 
of the variable y” [Gajda, 2004, p. 156].

Testing the nonstationarity of the researched series was supplemented with the 
KPSS test. Th e Kwiatkowski and the others’ test [Kwiatkowski, Phillips, Schmidt, 
Shin, 1992] develops the idea of testing the zero hypothesis that the series is station-
ary towards the deterministic trend or towards the intercept. When the calculated 
statistical values of KPSS exceed the critical values, there are no reasons to reject the 
zero hypothesis about the trend ‘stationarity (or about the trend-less stationarity, to-
wards the intercept) of the researched series. In the opposite case the zero hypothesis 
can be rejected and replaced by the alternative hypothesis about nonstationarity of 
the series [Syczewska, 2005, p. 123]. Th e KPSS test allows (unlike the ADF test) to 
reject the zero hypothesis about the trend stationarity in the conditions when atypi-
cal behaviours of the researched processes occur [Otero, Smith, 2003, p. 2].

Th e KPSS test results obtained for the quotations dynamics of the stock compa-
nies and WIG do not allow to reject not only the zero hypothesis about their trend 
stationarity but also the zero hypothesis about stationarity without the deterministic 
trend (in relation to the intercept). At the same time, rejection of the second zero 
hypothesis proved to be more diffi  cult. Th erefore the KPSS test explicitly indicates 
the stationarity of the series towards the trend (including also the stochastic trend 
which indicates permanent and large anomalies). It would be an important recom-
mendation for forecasting such processes. Simultaneously, the quality of forecasting 
could become radically improved aft er the localization of specifi c turning points 
where the change of the cyclical structure of the time series occurs.
The zero hypothesis:  the stationary process; test KPSS for variab-

le KBL_dyn 
(without trend)
Lag truncation = 0
The test statistics = 20,4545
10%  5%  2,5%  1%

Critical values:  0,347  0,463  0,574  0,739 
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The zero hypothesis:  the stationary process; the KPSS test for va-
riable KBL_dyn
(with trend)
Lag truncation = 0
The test statistics = 10,5926
10%   5%  2,5%  1% 

Critical values:  0,119  0,146  ,176  0,216 
The zero hypothesis:  the stationary process; the KPSS test for va-

riable KR_dyn
(without trend)
Lag truncation = 0
The test statistics = 69,2624
10%   5%  2,5%  1% 

Critical values:  0,347  ,463  0,574  0,739
The zero hypothesis:  the stationary process; the KPSS test for va-

riable KR_dyn 
(with trend)
Lag truncation = 0
The test statistics = 9,07095
10%   5%  2,5%  1% 

Critical values: 0,119  0,146  0,176  0,216
The zero hypothesis:  the stationary process: The KPSS test for va-

riable PR_dyn 
(without trend)
Lag truncation = 0
The test statistics = 101,24
10%   5%  2,5%  1% 

Critical values:  0,347  0,463  0,574  0.739
The zero hypothesis:  the stationary process; the KPSS test for va-

riable PR_dyn
(with trend)
Lag truncation = 0
The test statistics = 7,24485
10%   5%  2,5%  1% 

Critical values:  0,119  0,146  0,176  0,216
The zero hypothesis:  the stationary process; The KPSS test for va-

riable WIG_dyn
(without the trend)
Lag truncation = 0
The test statistics = 207,51
10%   5%  2,5%  1% 

Critical values:  0,347  0,463  0,574  0,739
The zero hypothesis:  the stationary process; the KPSS test for va-

riable WIG_dyn
(with trend)
Lag truncation = 0
The test statistics = 24,0147
10%   5%  2,5%  1% 

Critical value:  0,119  0,146  0,176  0,216

Both the ADF test and the KPSS test more or less explicitly indicate the station-
arity towards the stochastic trend of the researched processes. Th erefore the ques-
tion arises whether removing the stochastic Hodrick – Prescott trend from the re-



28

searched series of the quotation dynamics allows us to obtain an explicitly station-
ary (towards such a trend ) time series. Th e results below give us a positive answer 
to the question posed. Th e data with the note _hp include the stochastic Hodrick 
– Prescott trend generated on the basis of the series of the quotation dynamics of 
the respective stock companies and WIG. Th e calculations were carried out using 
Add –In to the Excell Timeseries fi lters package by Kurt Annen7. Th e data with the 
note _cycle were obtained as a quotient of the original data and the trend data: y_
cycle = y_dyn/y_hp.

-- -Give Win 2.30 session started at 21:30:01 on Monday 10 April 2006---
Ox version 3.30 ( Windows ) © J. A. Doornik, 1994 2003

Descriptive Statistics package version 1.0, object created on 10-04-2006
 

KBL_cycle: ADF tests ( T=2619, Constant;5%=-2.86 1%=3.44)
D-lag        t-adf          beta Y_1         sigma            AIC
   0          - 13.25**    0.87433          0.06025        -5.618
KBL_cycle: ADF tests ( T =2619, Constant+Trend; 5%=3.41 1%=-3.97)    
D-lag        t-adf          beta Y_1         sigma           AIC
   0          -13.25**     0. 87425         0.6026         -5.617
KR_cycle: ADF tests ( T=2740, Constant; 5%=-2.86 1%=3.44
D-lag        t-adf          beta Y_1         sigma           AIC
   0         -8.289**       0.95127       0.05071          -5.963
KR_cycle: ADF tests ( T=2740, Constant + Trend; 5%=-3.41 1%=3.97)
D-lag        t-adf           beta Y_1        sigma             AIC
    0        -8.294**        0.95121       0.05071           -5.962
PR_cycle: ADF tests ( T=2619, Constant; 5%=-2.86 1%=-3.44)
D-lag        t-adf           beta Y_1         sigma            AIC
   0           -11.24**     0.90839       0.06225            -5.553
PR_cycle: ADF tests ( T=2619, Constant + Trend; 5%=-3.41 1%=-3.97)
D-lag        t-adf           beta Y_1         sigma             AIC
   0           -11.25**     0.90809          0.06225          -5.552
WIG_cycle:ADF tests ( T=3289, Constant; 5%= -2.86 1%=3.44)
D-lag        t-adf          beta Y_1         sigma             AIC
   0          -15.74**      0.86016          0.03620         -6.637
WIG_cycle: ADF tests ( T=3289, Constant+Trend; 5%=-3.41 1%=3.97)
D-lag           t-adf           beta Y_1           sigma                AIC
   0            -15.74**      0.86016            0.03620            -6.636
KBL_hp: ADF tests ( T=2617, Constant; 5%=-2.86 1%=3.44)
D-lag           t-adf           beta Y_1           sigma                AIC

7 [web:reg]timeseries fi lters package Add-Inn written by Kurt Annen(2005). Th is is freeware pro-
gramme.
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   0            -1.261           0.99971             2.374                 1.730
KBL_hp: ADF tests ( T=2617, Constant+ Trend; 5%=-3.41 1%=-3.97)
D-lag           t-adf           beta Y_1           sigma                 AIC
   0            -1.984           0.99954             2.365                 1.722
KR_hp: ADF tests ( T=2740, Constant;5%=-2.86 1%=-3.44)
D-lag           t-adf           beta Y_1           sigma                  AIC
   0            -0.4374         0. 99992            4.852                  3.160
KR_hp: ADF tests ( 9 T=2740, Constant+Trend; 5%=-3.41 1%=-3.97)
D-lag          t-adf            beta Y_1           sigma                  AIC
   0             4.490           1.0009               4.766                   3.124
PR_hp: ADF tests ( T=2618, Constant; 5%=-2.86 1%=3.44)
D-lag          t-adf            beta Y_1           sigma                   AIC
   0             -0.04069      0.99999            2.900                    2.130
PR_hp: ADF tests  ( T=2618, Constant + Trend; 5%=3.41 1%=-3.97)
D-lag          t-adf            beta Y_1          sigma                    AIC
   0             -2.715          0.99933           2.890                     2.123
WIG_hp: ADF tests ( T=3289, Constant; 5%=-2.86 1%=-3.44)
D-lag          t-adf            beta Y_1          sigma                    AIC
   0              11.75          1.0010              3.547                     2.533
WIG hp: ADF tests ( T=3289, Constant + Trend; 5%=-3.41 1%=-3.97)
D-lag          t-adf            beta Y_1          sigma                    AIC
   0              9.428           1.0014             3.541                     2.530

As can be seen, the ADF test carried out for all the series with a removed stochastic 
trend allows us to reject the zero hypothesis about their nonstationarity. Th erefore, 
the series obtained can be interpreted as stationary towards the stochastic trend. 
Th e graphs beneath include respective courses of the time series. 

Removing the stochastic trend from the original data allows us to obtain the sta-
tionary series towards the trend, not towards the diff erences. Th erefore, it is diffi  cult 
to speak about the order of integration (or cointegration) of the researched pro-
cesses. Th e attempts to select partial integrated processes (with the so-called frac-
tional integration) are made more and more frequently [Geweke, Porter-Hudak, 
1983; Robinson, 1995; Beyaert, 2003; Syczewska, 2004; Syczewska, 2005, pp. 122, 
124, 128-135; Kufel, 2004, p. 70]. Th e order of integration d is, as we know, defi ned 
as the smallest integer of diff erentiations, aft er which the series can be treated as 
stationary8. So far it has been acknowledged that the order of integration can take 
only the integer values. Nowadays it is being acknowledged that the values d are the 
real numbers and they refer to the long memory processes (if 0.5 < d< 1). Th e pro-
cesses with non integer d are partially (“fractionally”) integrated. If d = 0 then dis-

8 ”the nonstationary series which can be transformed into the stationary series, calculating the 
diff erences d times, is called the integrated series in order d”, - [Charemza, Deadman 1997, s. 112]. 
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Figure 1.Th e time series of the quotations dynamics of Kable Company
Source: Self calculations

Figure 2. Th e time series of the quotations dynamics of Krosno Company
Source: Self calculations
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Figure 3. Th e time series of the quotations dynamics of Próchnik Company
Source: Self calculations

Figure 4. Th e time series of the quotations dynamics of WIG
Source: Self calculations
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turbances (shocks) of the time series have the local character (“short memory”) and 
their infl uence does not reveal itself in a long term. However, if d>0, the situation 
radically changes: disturbances can be transferred into the distant future and aff ect 
the shaping of the time series values. In this case one can speak about “long mem-
ory” or about the persistence of the time series [Peters, 1997, p. 244]. Permanence 
of the process memory depends on value d: the smaller d is, the less persistent the 
disturbances of the time series will be. If d<0.5 then the process can be acknowl-
edged as the stationary one. Of particular interest for the economic time series is 
the case when 0.5<d<1. Th is means that the series are simultaneously nonstation-
ary and bestowed with the long “memory”. Th erefore, despite the occurrence of the 
phenomenon of disturbing data transmission into the distant future, the series re-
veals a tendency to keep the average dynamics at a fi xed level for a long period of 
time. In other words, “the series has a long but transitory memory” [ Beyaert, 2003, 
p. 3]. Th is is distinctly diff erent from the situation when d≥1, that means when the 
average does not display any long-term infl uence on the long-run series evolution. 
Such a series though, is dominated by the remote and the recent shocks (distur-
bances). Th is series is characteristic of a permanent, infi nite memory. If d<1, we can-
not exclude the existence of the long-run equilibrium (represented by the average). 
Simultaneously, it is obvious that for 0<d<1 the traditional testing does not work, i.e. 
testing for the presence of the unit root (H0: d =1) or the stationarity tests (H0: d=0) 
developed basing on the works by Dickey-Fuller and Philips-Perron. In such con-
ditions these tests are too weak to prove the existence of the series average and they 
lead to a false conclusion about the infi nite memory of the researched process. 

Th erefore, let the process Yt be generated by the model (1-L)d(Yt-Y0)=ut, where Y0 is 
the random average of a given density of distribution, d does not have to be the integer, 
and ut is the stationary process with the zero average. Such a process Yt is defi ned as 
fractionally integrated in the order d. Th is process will be stationary and irreversible 
when  and nonstationary when d≥0.5. Until d<1 the process will have a tendency to 
keep the average at the same level. Th is means that the occurring disturbances will 
not permanently infl uence the future behaviour of the process. If d=0 the process 
dynamics is related to the stationary dynamics of the process ut (such processes are 
characterized by the short memory). However if d>0 the process dynamics will de-
pend, on the one hand, on the short-run dynamics ut and on the other hand, on the 
long-run correlations occurring inside the series. Such a process is characterized by 
the long memory. Th e memory is transitory when d<1, or permanent when d≥1. Th e 
value d is therefore a measure of the degree of persistence of disturbances: the lower 
this value is, the lower is the shock persistence. Establishing the value d is therefore 
of fi rst-rate importance for the forecasting the economic processes. Particularly im-
portant is the answer to the question whether d< 0.5, 0.5≤d<1 or d≥1.

Various methods are used to estimate the partial (fractional) integration pa-
rameters. One of the most widely used is the Geweke and Porter–Hudak method, 
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[Geweke, Porter-Hudak, 1983; Gil-Alana, 2000; Banerjee, Urga, 2004]. Th is method 
is based on the regression of the logarithmic values of the periodogram of the time 
series and on the logarithmic values of the Fourier frequency (GPH regression or 
LP regression). Another frequently used method is establishing the local Whittle’s 
estimator [Künsch, 1987; Robinson, 1995 (1)]. Both methods demand removing the 
trend from the time series (nowadays, the methods of estimating d are being devel-
oped without diff erencing and without detrending the original data [Beyaert, 2003, 
p. 6]). P.M.Robinson proved the convergence and asymptotic normality of the LP 
and Whittle’s estimators [Robinson, 1995; Robinson, 1995 (1); Deo, Hsieh, Hurvich, 
2005]. Below there are the results of estimating the parameters of fractional inte-
gration using the Geweke and Porter-Hudak method and using the procedure of 
Whittle’s local estimator. Both methods use the periodogram and the spectral den-
sity to estimate the real degree of integration.

Periodogram for the variable KBL_dyn
Th e number of observations = 2618
Test for the fractional integration (Geweke, Porter-Huduk)
Th e estimated fractional integration = 1,094 (0,132314)
the test statistics: t(50)=8,26824, with the value p 0,0000
Th e local Whittle’s estimator (T=2618, m=111)
Th e estimated fractional integration=0,964837 (0,474579)
the test statistics: z = 20,3304, with the value p 0,0000 

Th e periodogram for the variable KBL_hp
Th e number of observations = 2618
Th e test for the fractional integration (Geweke, Porter- Hudak)
Th e estimated fractional integration = 1,72093 (0,147608)
the test statistics: t(50) = 11,6587, with the value p 0,0000
Th e local Whittle’s estimator (T= 2618, m = 111)
Th e estimated fractional integration = 1,73646 (0,0474579)
the test statistics: z = 36,5895, with the value p 0,0000

Th e periodogram for the variable KBL_cycle
Th e number of observations = 2618
Th e test for the fractional integration (Geweke, Porter-Hudak)
Th e estimated fractional integration = -0,288865 (0, 114287)
the test statistics: t(50) = -2,52754, with the value p 0,0147
Th e local Whittle’s estimator (T = 2618, m = 111)
Th e estimated fractional integration = 0,392937 (0,0474579)
the test statistics: z = 8,2797, with the value p 0,0000 

Th e periodogram for the variable KR_dyn
Th e number of observations = 2741
Th e test for the fractional integration (Geweke, Porter – Hudak)
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Th e estimated fractional integration = 1,14947 (0,123683)
the test statistics: t(51) = 9,29375, with the value p 0,0000
Th e local Whittle’s estimator (T = 2741, m = 114)
Th e estimated fractional integration = 1,01028 (0,0468293)
the test statistics: z = 21,5736, with the value p 0,0000
Th e periodogram for the variable KR_hp
Th e number of observations = 2741
Th e test for the fractional integration (Geweke, Porter – Hudak)
Th e estimated fractional integration = 2,31278 (0,146764)
the test statistics: t (51) = 15,7585, with the value p 0,0000
Th e local Whittle’s estimator (T = 2741, m = 114)
Th e estimated fractional integration = 2,74053 (0,0468293)
the test statistics: z = 58,5216, with the value p 0,0000

Th e periodogram for the variable KR_cycle
Th e number of observations = 2741
Th e test for the fractional integration (Geweke, Porter –Hudak)
Th e estimated fractional integration = 0,0890018 (0,121581)
the test statistics: t(51) = 0,732039, with the value p 0,4675
Th e local Whittle’s estimator (T = 2741,m = 114)
Th e estimated fractional integration = 0,535201 (0,0468293)
the test statistics: z = 24,6079, with the value p 0,0000

Th e periodogram for the variable PR_dyn
Th e number of observations = 2619
Th e test for the fractional integration (Geweke, Porter – Hudak)
Th e estimated fractional integration = 0,914973 (0,0505188)
the test statistics: t(50) = 18,1115, with the value p 0,0000
Th e local Whittle’s estimator (T = 2619, m = 111)
Th e estimated fractional integration = 1,16784 (0,0474579)
the test statistics: z = 24,6079, with the value p 0,0000

Th e periodogram for the variable PR_hp
Th e number of observations = 2619
Th e test for the fractional integration (Geweke, Porter – Hudak)
Th e estimated fractional integration = 2,10974 (0,112251)
the test statistics: t(50) = 18,7949, with the value p 0,0000
Th e local Whittle’s estimator (T = 2619, m = 111)
Th e estimated fractional integration = 2,23922 (0,0474579)
the test statistics: z = 47,1833, with the value p 0,0000

Th e periodogram for the variable PR_cycle
Th e number of observations = 2619
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Th e test for the fractional integration (Geweke, Porter – Hudak)
Th e estimated fractional integration = -0,0995222 (0,106873)
the test statistics: t(50) = -0,931216, with the value p 0,3562
Th e local Whittle’s estimator (T = 2619, m = 111)
Th e estimated fractional integration = 0,467854 (0,0474579)
the test statistics: z = 9,8583, with the value p 0,0000

Th e periodogram for the variable WIG_dyn
Th e number of observations = 3290
Th e test for the fractional integration (Geweke, Porter – Hudak)
Th e estimated fractional integration = 0,940674 (0,0701059)
the test statistics: t(50) = 13,4179, with the value p 0,0000
Th e local Whittle’s estimator (T = 3290, m = 127)
Th e estimated fractional integration = 1,00747 (0,0443678)
the test statistics: z = 22,7072 with the value p 0,0000

Th e periodogram for the variable WIG_hp
Th e number of observations = 3290
Th e test for the fractional integration (Geweke, Porter – Hudak)
Th e estimated fractional integration = 0,909616 (0,0359514)
the test statistics: t(56) = 25,3013, with the value p 0,0000
Th e local Whittle’s estimator (T = 3290, m = 127)
Th e estimated fractional integration = 1,01006 (0,0443678)
the test statistics: z = 22,7656 with the value p 0,0000
Th e periodogram for the variable WIG_cycle
Th e number of observations = 3290
Th e test for the fractional integration (Geweke, Porter – Hudak)
Th e estimated fractional integration = -0,483769 (0,0872957)
the test statistics: t(56) = -5,54173, with the value p 0,0000
Th e local Whittle’s estimator (T = 3290, m = 127)
Th e estimated fractional integration = 0,172351 (0,0443678)
the test statistics: z = 3,88461, with the value p 0,0001
Th e results will be presented in the table and on the graph, where dGPH is the es-

timator of the Geweke Peters- Hudak fractional integration, dW – the Whittle’s local 
estimator, σ 2– the standard error, p – the empirical level of signifi cance. Th e analysis 
of the results obtained allows to establish the short memory of the stationary time 
series deprived of the stochastic trend, the permanent memory of the non station-
ary data of the Hodrick-Prescott trend and the declining memory of the non sta-
tionary time series of the quotation dynamics of the stock companies. It is charac-
teristic that for the non stationary series of the WIG aggregation, the estimators of 
the fractional integration values, are close to one, which would testify to its smaller 
persistence as regards the companies’ quotations.
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Table 1. Th e fractional integration estimators by Geweke, Peter-Hudak and Whittle 

Market quotations Estimators d σ 2 p
KBL_dyn

dGPH
dW

1.094
0.964837

0.132314
0.0474579

0.0000
0.0000

KBL_hp
dGPH
dW

1.72093
1.73646

0.147608
0.0474579

0.0000
0.0000

KBL_cycle
dGPH
dW

-0.288865
0.392937

0.114287
0.0474579

0.0147
0.0000

KR_dyn
dGPH
dW

1.14947
1.01028

0.123683
0.0468293

0.0000
0.0000

KR_hp
dGPH
dW

2.31278
2.74053

0.146764
0.0468293

0.0000
0.0000

KR_cycle
dGPH
dW

0.0890018
0.535201

0.121581
0.0468293

0.4675
0.0000

PR_dyn
dGPH
dW

0.914973
1.16784

0.0505188
0.0474579

0.0000
0.0000

PR_hp
dGPH
dW

2.10974
2.23922

0.112251
0.0474579

0.0000
0.0000

PR_cycle
dGPH
dW

-0.0995222
0.467854

0.106873
0.0474579

0.3562
0.0000

WIG_dyn
dGPH
dW

0.940674
1.00747

0.0701059
0.0443678

0.0000
0.0000

WIG_hp
dGPH
dW

0.909616
1.01006

0.0359514
0.0443678

0.0000
0.0000

WIG_cycle
dGPH
dW

-0.483769
0.172351

0.0872957
0.0443678

0.0000
0.0001

Source: Self calculations based on GNU Regression Econometrics Time-Series Library-gretl ver.1.5.1 
(GNU GENERAL PUBLIC LICENSE, http://gretl.sourceforge.net).

Th e statement made by Kolmogorow-Cramer says: if the real process can be pre-
sented as the stationary stochastic process in a broad sense (of zero average value) 
then this process can be presented in a spectral form [Swiesznikow, 1965, chapter II; 
Gichman, Skorochod, 1968, chapter I; Talaga, Zieliński, 1986, pp. 18-25; Stoica, 
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Moses, 1997, pp. 6-13]. Th e fi gures below illustrate the functions of spectral den-
sity of the stationary (towards the stochastic trend) and the nonstationary time se-
ries. Th e general course of the spectral density curves is typical for the stationary, 
stochastic economic series. Th e curves take the highest values for low frequencies 
and gradually decrease simultaneously with a rise of the frequencies of harmoni-
ous fl uctuations occurring in the time series. Th e most important share in the vari-
ability of the researched processes have the long run fl uctuations. With respect to 
the stock quotations these are the fl uctuations with the periods about 34, 20 and 14 
stock sessions. Th e short run fl uctuations for the data of the Hodrick-Prescot sto-
chastic trend indicate a relatively large share in the general variance of the series. Th e 
specifi cation of the spectral density function presented on the graphs below shows 
a high convergence in the harmonic structures of the stationary and nonstationary 
processes in the low frequency area. Th is convergence is considerably weaker for 
the high frequencies. Th is would be an important guideline in the construction of 
a dynamic econometric model of the stock quotations: it is easier to obtain the con-
gruent, linear, dynamic models for the long run fl uctuations than for the short run 
fl uctuations. In his work devoted to the selected characteristics of the time series of 
economic data C.W.J.Granger in 1981 proved the inconsistency of the model with 
the seasonal explained variable, non-seasonal explaining variables and the random 
residual process [Granger, 1981]. On the graphs below, marked with the arrows are 
the short run fl uctuations, giving their periodicity (calculated as the reverse of fre-
quency) in the number of the stock sessions together with the companies quotations 
and WIG quotations. Th e values of the periods described in the arrows text fi elds 

Figure 5. Estimators of long memory by Geweke, Peter-Hudak and Whittle
Source: Self calculations (see Table1)
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Figure 6. Th e Tukey spectrum dynamics time series of the stock index of Kable 
company

Source: Self calculations in the Matlab environment (Signal Processing Toolbox), Copyright 20004, 
ver.7.0.1.24704 (R14) Service Pack1, Licence number 265559, the Math Works, Inc. MATLAB is a 

registered trademark of Th e Math Works, Inc. 

Figure 7. Th e Tukey spectrum dynamics time series of the stock index of Krosno 
company

Source: Self calculations (see Figure 6)
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Figure 9. Th e Tukey spectrum dynamics time series of the Warsaw Stock Index (WIG)
Source: Self calculations (see Figure 6) 

Figure 8. Th e Tukey spectrum dynamics time series of the stock index of Próchnik 
company

Source: Self calculations (see Figure 6)
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concern – respectively – the “raw” indicators of dynamics (_dyn), the stochastic 
trend indicators (_hp) and the cyclical element indicators (_cycle).

As results from the research, the spectral analysis of the stock quotations does not 
reveal the fl uctuations in the market conditions. Th e fl uctuations with the period of 
about 34, 20 and 14 sessions with the quotations of particular companies and WIG 
correspond to the periods 8-10, 5-6 and 3-4 weeks9. Th e lack of business fl uctuations 
is conditioned, on the one hand, by the rigorous assumptions of the spectral analysis 
as regards the properties and the length of the time series and, on the other hand, 
by a specifi c character of the Stock Market in Poland. Th is market is characterized, 
among others, by a high level of concentration, a low level of turnover and, above 
all, institutional underdevelopment. A characteristic feature of the rates quoted on 
the Warsaw Stock Exchange is high demand for the stocks (mainly ordered by the 
Investment Funds Associations and by the Open Pension Funds) and not a very 
big supply (a small number of Stock debuts). Forecasting the dynamics of the stock 
exchange rates is, in these conditions, very diffi  cult. Th e Warsaw Stock Exchange, 
as regards the value of the Stock debuts in the fourth quarter of 200610 ranked 7th 
in Europe (this is hardly 3% compared to 40% of the London Stock Exchange, 30% 
of Euronext and 12% of Deutsche Börse). Th e share of institutional investors in the 
volume of the stock turnover showed a strong dynamics in the period 1997- 2006 
and increased from 24% in 1997 to 39 % in 2002 in 2003:

9 In connection with a diff erent frequency of sampling the Stock Exchange quotations, the fl uc-
tuation periodicity measured by the number of sessions was corrected so as to obtain the periodicity 
measured by time. Th e 7 sessions period is the longest for the series with the lowest frequency of pro-
bation of Kable and Próchnik, a little bit shorter for Krosno and the shortest for WIG.

10 In accordance with the PricewaterhouseCoopers inquiry, www.pwc.com/pl/pl/about/.

Figure 10. Th e share of the institutional investors in the stock turnover volume, in 
general (in %)

Source: Self calculations based on www//gpw.com.pl/źródła/gpw/prezentacje 
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To obtain the answer to the question about the existence of the longer- run fl uc-
tuations, we will refer to the analysis of the rescaled range. Th erefore, we will try 
to defi ne the maximum range of “memory” for the particular economic process-
es.Th e rescaled range analysis, R/S used for the research on the time series of the 
stock indexes allows us to defi ne the random walking bias, i.e. to measure the trend’s 
strength and the level of the disturbing ”noise” in them. Th e measure is deviation of 
the Hurst coeffi  cient from 0.5 [Peters, 1997, p.65 ]. Th e Hurst coeffi  cient takes the 
following values: (1) H=0.5, (2) 0≤H< 0.5 and 0.5<H≤1. In the fi rst case the events 
are of the random character and they are not correlated. In the second case we deal 
with the antipersistent systems. Th e time series in this case are more variable than 
the random series. Th e processes they describe are characterized by the behaviour 
defi ned in the literature as “returning to a mean”. Aft er each strong deviation is fol-
lowed by opposite (i.e. equally strong), balancing deviation. Th e closer H is to zero, 
the more ergodic the process is. However, in the third case, when 0.5<H≤1 we deal 
with the long memory processes, persistent ones, supporting the trend. If H is closer 
to one, the stronger is the power of behaviours reinforcing the trend. Th e closer H 
is to 0.5, the higher is the level of the “noise” and the more fuzzy is the trend. Th e 
infl uence of the current phenomena on the future phenomena can be defi ned by 
the correlation coeffi  cient: C=2(2H-1) -1. For H=0 the correlation C=-½, for H=1 C=1, 
which means that the process has an infi nite memory and it resembles the situation 
described by Koheleth:

“Th at which hath been is that which shall be,
and that which hath been done is that which shall be done;
and there is nothing new under the sun” [Bible, Ecclesiastes 1.9; Tako głosi 
Kohelet, 2000, p. 28].
Th e results obtained prove the persistence of the series of stock quotations dy-

namics. H is bigger than 0.5 and the probability density function of these series is 
not the curve of the normal density. If H=0.5 it does not mean that we deal with 
the Gauss random walk; this only means that the analyzed process is deprived of 
the long memory. As regards the persistent time series fractal densities of probabil-
ity apply. Th e measure of the fractal density is the so-called fractal dimension (D). 
It is connected with the Hurst coeffi  cient: D=2-H. Th ese processes are a mixture 
of behaviours consistent with the trend and the recurrent, cyclical behaviours. Th e 
cyclical ones can be roughly estimated. Roughly, because we deal with the fractal 
and non periodic processes. Th e length of the cycle defi nes the range aft er which 
the process loses the memory and behaves ergodically. In the present research the 
average period of the cycle was determined in the number of daily quotations. Th is 
number is not the same for all the companies and for WIG, although it covers the 
same period of almost 15 years, from 16th April 1991 to 27th March 2006. Over this 
period the quotations number of Kable was 2618, Krosno – 2741, Próchnik – 2619 
and WIG- 3290. Th e results of the analysis of the rescaled range allow us to for-

–
–
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mulate the thesis about occurrence of the long and the short term cycles. Th e short 
cycles, aft er which the systems behave ergodically (H=0) equal: for Kable 40 (re-
peated 63 times), for Krosno 60 (repeated 42 times) and for WIG 64 (repeated 45 
times) of the daily quotations, i.e. from 12 to 18 weeks. However, the long cycles, 
aft er which the system loses its memory completely and behaves erratically and un-
predictably, are respectively: 252 (10 cycles), 315 (8 cycles), 288 (10 cycles) and for 
Próchnik 504 (5 cycles) of the quotations, which would correspond approximately 
to 18, 21, 16 and 36 months. Forecasting the stock quotations indexes aft er these pe-
riods can be defi ned as Koheleth beholds: “vanity and a striving aft er wind” [Bible, 
Ecclesiastes 1.14; Tako głosi Kohelet, 2000, p. 29]. Th e Hurst coeffi  cients, the fractal 
dimensions, the correlation coeffi  cients and the approximate cycles (on the quota-
tion days) were shaped as follows:

Table 2. Th e R/S analysis of selected quotations

Daily quotations Hurst coeffi  cient Fractal dimension Correlation 
coeffi  cient

Cycles on 
quotations days

Short cycles
Kable 0.553 1.447 7.6% 40 (12 weeks)

Krosno 0.545 1.455 6.4% 60 (18 weeks)
WIG 0.561 1.439 8.8% 64 (16 weeks)

Cykle długie
Kable 0.599 1.401 14.7% 252 (18 months)

Krosno 0.564 1.436 9.3% 315 (21 months)
Próchnik 0.571 1.429 10.3% 504 (36 months)

WIG 0.607 1.393 16% 288 (16 months)

Source: Self calculations in BENOIT programme Ver. 1.31, TruSoft  Inf ’l, Inc. Copyright 1997,  
999.

Th e R/S analysis was then illustrated by means of the double logarithmic graphs 
below. Th e index by the x variable in the regression equations is the Hurst coeffi  -
cient on the graphs. 

For the fractal processes the self similarity is the characteristic property. We will 
try to answer to the question whether the researched processes have such a feature. 
Intuitively, the idea of self similarity does not create any diffi  culties. It is an exten-
sion of the notion known from geometry: similarity: ”Two objects, regardless of 
their sizes, are similar, if they are of the same shape … Similarities are the transfor-
mations permitting the homothety, rotations and shift s” [Peitgen, Urgens, Saute, 
1995, p. 188]. Fractals as self similar objects consist of subsequent generations of 
similarly shaped objects. In the non mathematical fractals the diminished copies 
are not identical with the whole, but they reveal some deviations. In this case we 
deal with the stochastic or statistic self similarity [Peitgen, Urgens, Saute, 1995, 



Figure 11. Th e R/S analysis of Kable (short cycles)
Source: Self calculations, see Table 2

Figure 12. Th e R/S analysis of Krosno (short cycles)
Source: Self calculations, see Table 2



Figure 13. Th e R/S analysis of WIG (short cycles)
Source: Self calculations, see Table 2

Figure 14. Th e R/S analysis of Kable (long cycles)
Source: Self calculations, see Table 2



Figure 15. Th e R/S analysis of Krosno (long cycles)
Source: Self calculations, see Table 2

Figure 16. Th e R/S analysis of WIG (long cycles)
Source: Self calculations, see Table 2
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p. 197].To establish the self similarity of the stationary time series (signals) we use 
the one-dimension, continuous wavelets analysis [Białasiewicz, 2000, pp. 219-221]. 
A continuous transformation of the wavelet function f t L( )∈ 2 is described by the 
following equation:

 Wf b a f f t t dtab ab( , ) ( , ) ( ) ( )*= =
−∞

∞

∫ ,                                  (4)

where a denotes the scale, b – shift , Wf (b,a) – the wavelet coeffi  cients (they are the 
function of position and scale). 

A change in the scale means expansion (increasing the scale) or compression 
(decreasing the scale) of the wavelet. Th e small scale means that Wf are represented 
by the low frequency elements, however, the big scale means that Wf describe the 
high frequency elements of the signal. As the maximum level of the scale we regard 
the moment of losing the long term memory (it is linked with the lowest frequency 
obtained in the R/S analysis). On the graphs below the wavelet analysis reveals the 
feature of self similarity of the stationary time series not in the whole researched 
period, but in its sub-periods (marked with arrows). Th e time series of Kable stock 
index reveals the self similar structure: from May 1994 to June 2005. Respectively, 
the self similarity of the stationary course of Krosno market quotations concerns 

Figure 17. Th e R/S analysis of WIG (long cycles)
Source: Self calculations, see Table 2
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the period from February 1994 to December 2005, Próchnik from January 1995 to 
May 2004 and WIG from April 1994 to December 2004. Th erefore this is the period 
of about 10-11 years. Th e self similarity of other frequencies (other scales) of the cy-
clical fl uctuations did not diff er from the given picture. Th erefore, we can presume 
that over the years 1994/95 and 2004/2005 fundamental changes took place in the 
capital market dynamics in Poland (see graphs 17-24).

Th e wavelet analysis off ers the tools allowing to discover the moment of discon-
tinuous, rapid change in the frequency of the signal. Th is is important for the fore-
casting of the capital market situation which is changing dynamically. Increase or 
decrease in the frequency of the signal correspond to compression or stretching of 
the period of the dynamics waving. Th en the entities making decisions have the im-
pression that time accelerates or slows down. A discontinuous change of the time se-
ries frequency is impossible to be detected by means of other methods [Białasiewicz, 
2000, p. 218]. Th e analysis results are illustrated on the graphs 25-28. Th e moment 
of rapid change of the signal frequency is identifi ed by the “needle” of the detail (the 
arrow with the date). Th e wavelets associated with the details (there can be more of 
them, but to simplify the analysis we accepted one detail) have a narrow spectrum 
of frequency of a high middle frequency. Such a wavelet is not associated with the 

Figure 18. Th e self similarity of Kable quotations dynamics
Source: Self calculations in MATLAB environment (Wavelet Toolbox), Copyright 2004, ver. 

7.0.1.24704 (R14) Service Pack 1, Licence number 265559, Th e Math Works, Inc. MATLAB is a 
registered trademark of Th e MathWorks, Inc.



Figure 19. Th e line of wavelet coeffi  cients of Kable quotations dynamics (a=196) 
Source: Self calculations, see Figure 18 

Figure 20. Th e self similarity of Krosno quotations dynamics
Source: Self calculations, see Figure 18



Figure 21. Th e line of wavelet coeffi  cients of Krosno quotations dynamics (a=250)
Source: Self calculations, see Figure 18

Figure 22. Th e self similarity of Próchnik quotations dynamics 
Source: Self calculations, see Figure 18
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Figure 23. Th e line of wavelet coeffi  cients of Próchnik quotations dynamics (a=480)
Source: Self calculations, see Figure 18

Figure 24. Th e self similarity of WIG quotations dynamics
Source: Self calculations, see Figure 18



Figure 25. Th e line of wavelet coeffi  cients of WIG quotations dynamics (a=261)
Source: Self calculations, see Figure 18

Figure 26. Th e discontinuous change of the frequency of Kable quotations dynamics
Source: Self calculations, see Figure 18



Figure 27. Th e discontinuous change of the frequency of Krosno quotations dynamics
Source: Self calculations, see Figure 18

Figure 28. Th e discontinuous change of the frequency of Próchnik quotation dynamics
Source: Self calculations, see Figure 18
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signal apart from the moment when a leap change of the signal frequency occurs. 
However, it is strongly correlated with the high frequency element, whereas. Th e 
Fourier transform does not demonstrate this advantage. Using it we cannot detect 
a separate event in the analyzed signal. Th e wavelet analysis is therefore an impor-
tant supplement of the spectral analysis.

Th e time series of Próchnik trade quotations most clearly illustrate the change 
in the frequency of the stock quotations dynamics, whereas the changes in WIG 
quotation dynamics are the least visible. Th is results from the statistic, aggregated 
character of the Warsaw Stock Index. It does not represent any real economic pro-
cess. As diff erent processes clash there and the picture obtained is very fuzzy. Th us, 
the usefulness of WIG quotations for the forecasting of real economic processes 
seems to be doubtful.
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