Output gap in the WAEMU zone: Comparative analysis of estimate by production function, Kalman filter and Bayesian structural VAR

Authors

  • Thierno Thioune Université Cheikh Anta Diop de Dakar, Sénégal; Laboratoire d ’ Analyse, de Recherche et d ’ Étude du Développement Centre de Recherches Economiques Appliquées Faculté des Sciences Economiques et de Gestion https://orcid.org/0000-0002-6344-2602

DOI:

https://doi.org/10.18559/rielf.2021.2.4

Keywords:

output gap, inflation, Kalman filter, Bayesian structural VAR, WAEMU

Abstract

The potential output and output gap concepts are important tools for central banks, and in particular the Central Bank of West African States (BCEAO), to forecast inflation in pursuit of their priority objective of inflation control. The choice of a method for estimating inflation is a delicate one. This paper proposes an estimation of potential output by the unobservable component methods, Watson's (1986) and Kuttner's (1994) approach, and by an economic modelling method, namely the Bayesian structural VAR. It also proposes a comparison of these different methods with the production function, which is widely used in the literature and recognized as the best method for estimating potential output for WAEMU countries. The results indicate that the different approaches as well as the production function explain the different crisis periods identified within the union. The comparative analysis, against all expectations, reveals that only the output gap obtained by the production function does not explain inflation.

Downloads

Download data is not yet available.

References

Abou, N. B., & Melesse, F. (2012). Évaluation du PIB potentiel et de l›écart de production dans l›UEMOA. Dakar: BCEAO, Direction de la Recherche et de la Statistique.
View in Google Scholar

Anas, J., & Ferrara, L. (2004). Detecting cyclical turning points: The ABCD approach and two probabilistic indicators. Journal of Business Cycle Measurement and Analysis, 2, 193–225. Banque de France. (2015). La croissance potentielle: une notion déterminante, mais complexe. Focus, 13, 1–8.
View in Google Scholar

BCEAO. (2016). Base des Données Économiques et Financières. Retrieved from https://edenpub.bceao.int
View in Google Scholar

Brouwer, G. de. (1998). Estimating output gaps. (Research Discussion Paper, 1–32). Reserve Bank of Australia.
View in Google Scholar

Bry, G., & Boschan, C. (1971). Cyclical analysis of time series: Selected procedures and computer programs. New York, London: National Bureau of Economic Research, Columbia University Press.
View in Google Scholar

Bu, Y. (2006). Fixed capital stock depreciation in developing countries: Some evidence from firm level data. The Journal of Development Studies, 42(5), 881–901.
View in Google Scholar

Camba-Mendez, G., & Rodriguez-Palenzuela, D. (2003). Assessment criteria for output gap estimates. Economic Modelling, 20(3), 529–562.
View in Google Scholar

Chagny, O., & Döpke, J. (2001). Measures of the output gap in the euro-zone: An empirical assessment of selected methods. (Kiel Working Paper No. 1053). Kiel: Kiel Institute of World Economics.
View in Google Scholar

Cotis, J.-P., Elmeskov, J., & Mourougane, A. (2004). Estimates of potential output : Benefits and pitfalls from a policy perspective. In L. Reichlin (Ed.), The euro area business cycle stylized facts and measurement issues (pp. 35–60). London: Centre for Economic Policy Research.
View in Google Scholar

Daba, N., Keungne, K., & Mounkala, E. (2016). Estimation de l’écart de production et Inflation dans la CEMAC. (BEAC Working Paper No. 07/16, 1–29.
View in Google Scholar

Damette, O., & Rabah, Z. (2010). La datation du cycle français : une approche probabiliste. Revue Française d’Économie, 24(4), 135–163.
View in Google Scholar

Destais, G., Lecuyer, C., Mazzi, G. L., & Savio, G. (2005). L’estimation du produit potentiel et de l’écart de production de la zone euro basée sur un modèle VAR structurel. European Communities, 36.
View in Google Scholar

Diop, P. L. (2000). Estimation de la production potentielle de l’UEMOA. Dakar: BCEAO, Notes d’Information Statistiques.
View in Google Scholar

Durbin, J., & Koopman, S. J. (2012). Time series analysis by state space methods. Oxford: Oxford University Press.
View in Google Scholar

Ferrara, L. (2009). Caractérisation et datation des cycles économiques en zone euro. Revue Économique, 60(3), 703–712.
View in Google Scholar

Göran, H., & Kristian, J. (2010). In search of a method for measuring output gap in Swedish economy. National Institute of Economic Research, 183.
View in Google Scholar

Heba, S. (2011). Estimation of Egypt’s potential output and output gap. (Euroindicators Working Papers, 1–25).
View in Google Scholar

Kabuya Kalala, F., & Tsasa V. Kimbambu, J.-P. (2012). Essai d’estimation du PIB potentiel de la République Démocratique du Congo par le filtrage univarié de Hodrick-Prescott. Laboratoire d’Analyse-Recherche en Économie Quantitative, 11–28.
View in Google Scholar

Kuttner, K. N. (1994). Estimating potential output as a latent variable. Journal of Business & Economic Statistics, 12(3), 361–368.
View in Google Scholar

Laxton, D., & Tetlow, R. (1992). A simple multivariate filter for the measurement of potential output. Ottawa: Bank of Canada.
View in Google Scholar

Lequien, M., & Montaut, A. (2014). Croissance potentielle en France et en zone euro: un tour d’horizon des méthodes d’estimation. (Document de travail, INSEE, 4–47).
View in Google Scholar

Litterman, R. B. (1986). Forecasting with Bayesian vector autoregressions-five years of experience. Journal of Business & Economic Statistics, 4, 25–38.
View in Google Scholar

Nehru, V., & Dhareshwar, A. (1993). A new database on physical capital stock: Sources, methodologies and results. Revista de Análisis Económico, 8(1), 37‒59.
View in Google Scholar

Pybus, T. (2011). Estimating the UK’s historical output gap. (OBR Working Paper No. 1).
View in Google Scholar

Ravn, M., & Uhlig, H. (2002). On adjusting the Hodrick-Prescott filter for the frequency of observations. The Review of Economics and Statistics, 84(2), 371‒375.
View in Google Scholar

Sene, S. M., & Thiaw, K. (2011). La production potentielle du Sénégal : une approche mixte fonc- tion de production-DGSE. Dakar: Direction de la Prévision et des Études Économiques. Sims, C. A., & Zha, T. (1998). Bayesian methods for dynamic multivariate models. Inter- national Economic Review (Symposium on Forecasting and Empirical Methods in Macroeconomics and Finance), 39(4), 949–968.
View in Google Scholar

Soumare, A. (2016). Évaluation de l’écart de la production de l’UEMOA à l’aide du filtre de Hodrick et Prescott corrigé. Revue d’Économie Théorique et Appliquée, 6(1), 1–16.
View in Google Scholar

Stock J. H., & Watson M. W. (2008). Phillip’s curve inflation forecasts. National Bureau of Economic Research, 1–84.
View in Google Scholar

Waggoner, D. F., & Zha, T. (2003). A Gibbs sampler for structural vector auto-regressions, Journal of Economic Dynamics & Control, 28, 349–366.
View in Google Scholar

Watson, M. W. (1986). Univariate detrending methods with stochastic trends. Journal of Monetary Economics, 18(1), 49–75.
View in Google Scholar

Downloads

Published

2021-12-30

Issue

Section

Articles

How to Cite

Thioune, T. (2021). Output gap in the WAEMU zone: Comparative analysis of estimate by production function, Kalman filter and Bayesian structural VAR. La Revue Internationale Des Économistes De Langue Française, 6(2), 77-105. https://doi.org/10.18559/rielf.2021.2.4

Similar Articles

1-10 of 182

You may also start an advanced similarity search for this article.