Output gap in the WAEMU zone: Comparative analysis of estimate by production function, Kalman filter and Bayesian structural VAR
DOI:
https://doi.org/10.18559/rielf.2021.2.4Keywords:
output gap, inflation, Kalman filter, Bayesian structural VAR, WAEMUAbstract
The potential output and output gap concepts are important tools for central banks, and in particular the Central Bank of West African States (BCEAO), to forecast inflation in pursuit of their priority objective of inflation control. The choice of a method for estimating inflation is a delicate one. This paper proposes an estimation of potential output by the unobservable component methods, Watson's (1986) and Kuttner's (1994) approach, and by an economic modelling method, namely the Bayesian structural VAR. It also proposes a comparison of these different methods with the production function, which is widely used in the literature and recognized as the best method for estimating potential output for WAEMU countries. The results indicate that the different approaches as well as the production function explain the different crisis periods identified within the union. The comparative analysis, against all expectations, reveals that only the output gap obtained by the production function does not explain inflation.
Downloads
References
Abou, N. B., & Melesse, F. (2012). Évaluation du PIB potentiel et de l›écart de production dans l›UEMOA. Dakar: BCEAO, Direction de la Recherche et de la Statistique.
View in Google Scholar
Anas, J., & Ferrara, L. (2004). Detecting cyclical turning points: The ABCD approach and two probabilistic indicators. Journal of Business Cycle Measurement and Analysis, 2, 193–225. Banque de France. (2015). La croissance potentielle: une notion déterminante, mais complexe. Focus, 13, 1–8.
View in Google Scholar
BCEAO. (2016). Base des Données Économiques et Financières. Retrieved from https://edenpub.bceao.int
View in Google Scholar
Brouwer, G. de. (1998). Estimating output gaps. (Research Discussion Paper, 1–32). Reserve Bank of Australia.
View in Google Scholar
Bry, G., & Boschan, C. (1971). Cyclical analysis of time series: Selected procedures and computer programs. New York, London: National Bureau of Economic Research, Columbia University Press.
View in Google Scholar
Bu, Y. (2006). Fixed capital stock depreciation in developing countries: Some evidence from firm level data. The Journal of Development Studies, 42(5), 881–901.
View in Google Scholar
Camba-Mendez, G., & Rodriguez-Palenzuela, D. (2003). Assessment criteria for output gap estimates. Economic Modelling, 20(3), 529–562.
View in Google Scholar
Chagny, O., & Döpke, J. (2001). Measures of the output gap in the euro-zone: An empirical assessment of selected methods. (Kiel Working Paper No. 1053). Kiel: Kiel Institute of World Economics.
View in Google Scholar
Cotis, J.-P., Elmeskov, J., & Mourougane, A. (2004). Estimates of potential output : Benefits and pitfalls from a policy perspective. In L. Reichlin (Ed.), The euro area business cycle stylized facts and measurement issues (pp. 35–60). London: Centre for Economic Policy Research.
View in Google Scholar
Daba, N., Keungne, K., & Mounkala, E. (2016). Estimation de l’écart de production et Inflation dans la CEMAC. (BEAC Working Paper No. 07/16, 1–29.
View in Google Scholar
Damette, O., & Rabah, Z. (2010). La datation du cycle français : une approche probabiliste. Revue Française d’Économie, 24(4), 135–163.
View in Google Scholar
Destais, G., Lecuyer, C., Mazzi, G. L., & Savio, G. (2005). L’estimation du produit potentiel et de l’écart de production de la zone euro basée sur un modèle VAR structurel. European Communities, 36.
View in Google Scholar
Diop, P. L. (2000). Estimation de la production potentielle de l’UEMOA. Dakar: BCEAO, Notes d’Information Statistiques.
View in Google Scholar
Durbin, J., & Koopman, S. J. (2012). Time series analysis by state space methods. Oxford: Oxford University Press.
View in Google Scholar
Ferrara, L. (2009). Caractérisation et datation des cycles économiques en zone euro. Revue Économique, 60(3), 703–712.
View in Google Scholar
Göran, H., & Kristian, J. (2010). In search of a method for measuring output gap in Swedish economy. National Institute of Economic Research, 183.
View in Google Scholar
Heba, S. (2011). Estimation of Egypt’s potential output and output gap. (Euroindicators Working Papers, 1–25).
View in Google Scholar
Kabuya Kalala, F., & Tsasa V. Kimbambu, J.-P. (2012). Essai d’estimation du PIB potentiel de la République Démocratique du Congo par le filtrage univarié de Hodrick-Prescott. Laboratoire d’Analyse-Recherche en Économie Quantitative, 11–28.
View in Google Scholar
Kuttner, K. N. (1994). Estimating potential output as a latent variable. Journal of Business & Economic Statistics, 12(3), 361–368.
View in Google Scholar
Laxton, D., & Tetlow, R. (1992). A simple multivariate filter for the measurement of potential output. Ottawa: Bank of Canada.
View in Google Scholar
Lequien, M., & Montaut, A. (2014). Croissance potentielle en France et en zone euro: un tour d’horizon des méthodes d’estimation. (Document de travail, INSEE, 4–47).
View in Google Scholar
Litterman, R. B. (1986). Forecasting with Bayesian vector autoregressions-five years of experience. Journal of Business & Economic Statistics, 4, 25–38.
View in Google Scholar
Nehru, V., & Dhareshwar, A. (1993). A new database on physical capital stock: Sources, methodologies and results. Revista de Análisis Económico, 8(1), 37‒59.
View in Google Scholar
Pybus, T. (2011). Estimating the UK’s historical output gap. (OBR Working Paper No. 1).
View in Google Scholar
Ravn, M., & Uhlig, H. (2002). On adjusting the Hodrick-Prescott filter for the frequency of observations. The Review of Economics and Statistics, 84(2), 371‒375.
View in Google Scholar
Sene, S. M., & Thiaw, K. (2011). La production potentielle du Sénégal : une approche mixte fonc- tion de production-DGSE. Dakar: Direction de la Prévision et des Études Économiques. Sims, C. A., & Zha, T. (1998). Bayesian methods for dynamic multivariate models. Inter- national Economic Review (Symposium on Forecasting and Empirical Methods in Macroeconomics and Finance), 39(4), 949–968.
View in Google Scholar
Soumare, A. (2016). Évaluation de l’écart de la production de l’UEMOA à l’aide du filtre de Hodrick et Prescott corrigé. Revue d’Économie Théorique et Appliquée, 6(1), 1–16.
View in Google Scholar
Stock J. H., & Watson M. W. (2008). Phillip’s curve inflation forecasts. National Bureau of Economic Research, 1–84.
View in Google Scholar
Waggoner, D. F., & Zha, T. (2003). A Gibbs sampler for structural vector auto-regressions, Journal of Economic Dynamics & Control, 28, 349–366.
View in Google Scholar
Watson, M. W. (1986). Univariate detrending methods with stochastic trends. Journal of Monetary Economics, 18(1), 49–75.
View in Google Scholar
Downloads
Published
Issue
Section
License
Copyright (c) 2021 Poznań University of Economics and Business
This work is licensed under a Creative Commons Attribution 4.0 International License.