Apport des modèles mathématiques et big data pour la prise de décisions de l'entreprise; le cas d'épidémies telles que le SARS-CoV-2 dans le secteur de la santé au Chili
DOI :
https://doi.org/10.18559/rielf.2023.1.1Mots-clés :
SARS-CoV-2, modèles mathématiques, statistique appliquéeRésumé
La pandémie causée par le virus COVID-19 a fait l'objet de nombreuses analyses et études en raison de ses incidences et conséquences graves dans tous les secteurs du développement humain au niveau mondial. Les données rendent compte de son impact non seulement sur le taux de mortalité mais aussi sur les indices économiques des pays. Lorsque l'on analyse tous ces indicateurs, on se demande si certains d'entre eux, tels que le nombre d'incidences et les variables du facteur reproductif effectif de maladie, ne peuvent pas mieux refléter la prédictibilité des cas et ainsi évaluer les mesures permettant d'atténuer l'incidence de nouveaux cas. Cette analyse est particulièrement significative si l'on considère que la pandémie n'est pas terminée et que de plus importantes et meilleurs résolutions sont encore nécessaires pour faire face à la crise en cours. Dans ce contexte, notre étude se propose d'analyser, à partir des modèles théoriques mathématiques, l'apport de ce secteur de la science pour trouver et prévoir de possibles solutions afin de diminuer les effets de cette pandémie. Pour cela, nous utiliserons des analyses statistiques basées sur trois modèles, phénoménologiques non linéaires, configuration de données et modèle logistique généralisé, en espérant qu'ils contribueront à une meilleure évaluation et compréhension des mesures prises face à la crise sanitaire et qui seront adoptées à l'avenir pour faire face à de nouveaux virus, en utilisant mieux les données et les outils technologiques dont dispose l'humanité.
Téléchargements
Références
Barrios, M., & González, H. (2020). Análisis estratégico sobre el panorama mundial en tiempos de la pandemia, desde la Argentina. Visión & Global Trends. Analytical Dossier, 8(1). https://www.vision-gt.eu/wp-content/uploads/2020/04/AD_8_2020.pdf
View in Google Scholar
Castañeda, C., & Ramos Serpa, G. (2020). Principales pandemias en la historia de la humanidad. Revista Cubana de Pediatria, 92. https://revpediatria.sld.cu/index.php/ped/article/view/1183/714
View in Google Scholar
Chowell, G. (2017). Fitting dynamic models to epidemic outbreaks with quantified uncertainty: A primer for parameter uncertainty, identifiability, and forecasts. Infectious Disease Modelling, 2(3), 379–398. https://doi.org/10.1016/J.IDM.2017.08.001
View in Google Scholar
Chowell, G., & Viboud, C. (2016). Is it growing exponentially fast? – Impact of assuming exponential growth for characterizing and forecasting epidemics with initial nearexponential growth dynamics. Infectious Disease Modelling, 1(1), 71–78. https://doi.org/10.1016/J.IDM.2016.07.004
View in Google Scholar
Collado Campaña, F. (2019). Liderazgo político local de larga continuidad: Alcaldes y notables en las capitales de provincia de Andalucía. Política y Gobernanza. Revista de Investigaciones y Análisis Político, 3, 49–74. https://doi.org/10.30827/POLYGOB.V0I3.9803
View in Google Scholar
Fraguas, R. (2020). Hipótesis sobre el origen de la pandemia: reflexiones geopolíticas. Razón y Fe: Revista hispanoamericana de cultura, 281(1445), 297–304. https://revistas.comillas.edu/index.php/razonyfe/article/view/12838/11782
View in Google Scholar
Jiménez-Díaz, J. F., Ruiloba-Núñez, J. M., & Collado-Campaña, F. (2021). Liderazgo político para un mundo nuevo: cambios globales y pandemia de la COVID-19. Revista mexicana de ciencias políticas y sociales, 242, 109–141. https://doi.org/10.22201/fcpys.2448492xe.2021.242.76524
View in Google Scholar
Kuhn, M., & Johnson, K. (2013). Applied predictive modeling. Springer.
View in Google Scholar
Luján Alcaraz, J. (2020). Sobre la reactivación social y económica. El papel de la Universidad ante la Pandemia. Discursos institucionales del Rector de la Universidad de Murcia. Murcia: Universidad de Murcia. https://digitum.um.es/digitum/bitstream/10201/95322/1/Discurso%20del%20Rector%20Luj%c3%a1n%20en%20Asamblea%20Regional%2023%20 de%20julio%20de%202020.pdf
View in Google Scholar
Luna-Nemecio, J. (2020). Determinaciones socioambientales del COVID-19 y vulnerabilidad económica, espacial y sanitario-institucional. Revista de Ciencias Sociales de la Universidad de Zulia, 26(2), 21–25. https://www.redalyc.org/journal/280/28063431004/28063431004.pdf
View in Google Scholar
Roosa, K., Lee, Y., Luo, R., Kirpich, A., Rothenberg, R., Hyman, J. M., Yan, P., & Chowell, G. (2020a). Real-time forecasts of the COVID-19 epidemic in China from February 5th to February 24th, 2020. Infectious Disease Modelling, 5, 256–263. https://doi.org/10.1016/J.IDM.2020.02.002
View in Google Scholar
Roosa, K., Lee, Y., Luo, R., Kirpich, A., Rothenberg, R., Hyman, J. M., Yan, P., & Chowell, G. (2020b). Short-term forecasts of the COVID-19 Epidemic in Guangdong and Zhejiang, China: February 13–23, 2020. Journal of Clinical Medicine, 9(2), 596. https://doi.org/10.3390/JCM9020596
View in Google Scholar
Téléchargements
Publiée
Numéro
Rubrique
Licence
(c) Copyright Poznań University of Economics and Business 2023
Ce travail est disponible sous la licence Creative Commons Attribution 4.0 International .