Contribution of mathematical models and big data for company decision-making; the case of epidemiological events such as SARS-CoV-2 in the health area in Chile

Authors

DOI:

https://doi.org/10.18559/rielf.2023.1.1

Keywords:

SARS-Cov-2, mathematical models, applied statistics

Abstract

The pandemic caused by the COVID-19 virus has given rise to numerous analyses and studies due to the implications and serious consequences it has had on all areas of human development worldwide. The data unquestionably reflect the degree of impact it has had, not only on the mortality rate, but also on the economic indices of nations. In analysing all these indicators, the question arises as to whether some key elements, such as the number of incidences, the variables of the effective reproductive factor of the disease could better reflect the predictability of the cases and, in turn, evaluate the mitigating measures to placate the incidence of new cases. This analysis is especially significant considering that the pandemic is not over, and that more and better resolutions are still needed to address this ongoing crisis. In this context, the present study aims to analyse, from the theoretical mathematical models, what has been the contribution of this area of science to find and predict possible solutions to quell the effects of this global pandemic. For this purpose, statistical analyses based on three models will be used : non-linear phenomenological models, data modeling and the generalised logistic model, which are expected to contribute to a better evaluation and understanding of the measures taken to face this health crisis and, in the future, the importance of understanding the use of data and the technological tools available to mankind today in the face of any new virus.

Downloads

Download data is not yet available.

References

Barrios, M., & González, H. (2020). Análisis estratégico sobre el panorama mundial en tiempos de la pandemia, desde la Argentina. Visión & Global Trends. Analytical Dossier, 8(1). https://www.vision-gt.eu/wp-content/uploads/2020/04/AD_8_2020.pdf
View in Google Scholar

Castañeda, C., & Ramos Serpa, G. (2020). Principales pandemias en la historia de la humanidad. Revista Cubana de Pediatria, 92. https://revpediatria.sld.cu/index.php/ped/article/view/1183/714
View in Google Scholar

Chowell, G. (2017). Fitting dynamic models to epidemic outbreaks with quantified uncertainty: A primer for parameter uncertainty, identifiability, and forecasts. Infectious Disease Modelling, 2(3), 379–398. https://doi.org/10.1016/J.IDM.2017.08.001
View in Google Scholar

Chowell, G., & Viboud, C. (2016). Is it growing exponentially fast? – Impact of assuming exponential growth for characterizing and forecasting epidemics with initial nearexponential growth dynamics. Infectious Disease Modelling, 1(1), 71–78. https://doi.org/10.1016/J.IDM.2016.07.004
View in Google Scholar

Collado Campaña, F. (2019). Liderazgo político local de larga continuidad: Alcaldes y notables en las capitales de provincia de Andalucía. Política y Gobernanza. Revista de Investigaciones y Análisis Político, 3, 49–74. https://doi.org/10.30827/POLYGOB.V0I3.9803
View in Google Scholar

Fraguas, R. (2020). Hipótesis sobre el origen de la pandemia: reflexiones geopolíticas. Razón y Fe: Revista hispanoamericana de cultura, 281(1445), 297–304. https://revistas.comillas.edu/index.php/razonyfe/article/view/12838/11782
View in Google Scholar

Jiménez-Díaz, J. F., Ruiloba-Núñez, J. M., & Collado-Campaña, F. (2021). Liderazgo político para un mundo nuevo: cambios globales y pandemia de la COVID-19. Revista mexicana de ciencias políticas y sociales, 242, 109–141. https://doi.org/10.22201/fcpys.2448492xe.2021.242.76524
View in Google Scholar

Kuhn, M., & Johnson, K. (2013). Applied predictive modeling. Springer.
View in Google Scholar

Luján Alcaraz, J. (2020). Sobre la reactivación social y económica. El papel de la Universidad ante la Pandemia. Discursos institucionales del Rector de la Universidad de Murcia. Murcia: Universidad de Murcia. https://digitum.um.es/digitum/bitstream/10201/95322/1/Discurso%20del%20Rector%20Luj%c3%a1n%20en%20Asamblea%20Regional%2023%20 de%20julio%20de%202020.pdf
View in Google Scholar

Luna-Nemecio, J. (2020). Determinaciones socioambientales del COVID-19 y vulnerabilidad económica, espacial y sanitario-institucional. Revista de Ciencias Sociales de la Universidad de Zulia, 26(2), 21–25. https://www.redalyc.org/journal/280/28063431004/28063431004.pdf
View in Google Scholar

Roosa, K., Lee, Y., Luo, R., Kirpich, A., Rothenberg, R., Hyman, J. M., Yan, P., & Chowell, G. (2020a). Real-time forecasts of the COVID-19 epidemic in China from February 5th to February 24th, 2020. Infectious Disease Modelling, 5, 256–263. https://doi.org/10.1016/J.IDM.2020.02.002
View in Google Scholar

Roosa, K., Lee, Y., Luo, R., Kirpich, A., Rothenberg, R., Hyman, J. M., Yan, P., & Chowell, G. (2020b). Short-term forecasts of the COVID-19 Epidemic in Guangdong and Zhejiang, China: February 13–23, 2020. Journal of Clinical Medicine, 9(2), 596. https://doi.org/10.3390/JCM9020596
View in Google Scholar

Downloads

Published

2023-06-30 — Updated on 2024-04-11

Issue

Section

Articles

How to Cite

Matheu, A., & Juica, P. (2024). Contribution of mathematical models and big data for company decision-making; the case of epidemiological events such as SARS-CoV-2 in the health area in Chile. La Revue Internationale Des Économistes De Langue Française, 8(1), 9-19. https://doi.org/10.18559/rielf.2023.1.1

Similar Articles

91-100 of 103

You may also start an advanced similarity search for this article.