Exploratory spatial analysis of the health and economic effects of COVID-19 using global data
DOI:
https://doi.org/10.18559/rielf.2023.2.1Keywords:
croissance, écart de production, COVID-19, autocorrélation spatialeAbstract
Purpose : This article analyses the health and economic effects of the COVID-19 pandemic.
Design/methodology/approach : The sample includes 132 countries, and the methodology is based on Exploratory Spatial Data Analysis. The calculation of the output gap by the Hodrick-Prescott filter allows to highlight the economic impact of the health crisis, through the output gaps in 2020. The health variable, for its part, is measured by the incidence rates of COVID-19.
Findings : The results of the estimations validated the hypothesis of spatial autocorrelation for both the health and economic variables. Examination of the Moran scatter plot confirms the positive local spatial association pattern, i.e. the existence of similarities between neighbouring countries in the manifestation of the pandemic and spatial heterogeneity between groups of countries. More specifically, the results show the existence of clusters with low levels of COVID-19 incidence in Africa and Asia, compared with Europe and North America. In addition, while high-income countries were generally more affected in terms of health, they developed greater economic resilience.
Originality/value : These results show that taking space into account could provide a better understanding of the dynamics of health and economic shocks.
Downloads
References
Anselin, L. (1996). The Moran scatterplot as an ESDA tool to assess local instability in ation. In I. Masser & F. Salge (Eds.), Spatial analytical perspectives on GIS, (pp. 111–125). Taylor & Francis.
View in Google Scholar
Azcona, G., Bhatt, A., Encarnacion, J., Plazaola-Castaño, J., Seck, P., Staab, S., & Turquet, L. (2020). From insights to action: Gender equality in the wake of COVID-19. UN Women Headquarters.
View in Google Scholar
Bailey, T. C., & Gatrell, A. C. (1995). Interactive spatial data analysis. Longman. Bonnefond, C. (2013). L’analyse des inégalités sociales et spatiales dans le processus d’émergence de la Chine. [Thèse de doctorat]. Université Montesquieu – Bordeaux IV.
View in Google Scholar
Carleton, T., Cornetet, J., Huybers, P., Meng, K., & Proctor, J. (2020). Global evidence for ultraviolet radiation decreasing COVID-19 growth rates: Global Estimates and Seasonal Implications. https://ssrn.com/abstract=3588601
View in Google Scholar
Cliff, A. D., & Ord, J. K. (1973). Spatial autocorrelation. Pion.
View in Google Scholar
Cliff, A. D., & Ord, J. K. (1981). Spatial processes: Models and applications. Pion.
View in Google Scholar
Cliff, A. D., Haggett, P., Ord, J. K., Bassett, K. A., & Davies, R. B. (1975). Elements of spatial structure. Cambridge University Press.
View in Google Scholar
Coutiño, A., and Zandi, M. (2021). Global loss of production capacity caused by the COVID-19 pandemic. Journal of Policy Modeling, 43(3), 493–502.
View in Google Scholar
Fonds Mondial. (2020). Atténuer l’impact du COVID-19 dans les pays touchés par le VIH, la tuberculose et le paludisme. Le Fonds mondial de lutte contre le sida, la tuberculose et le paludisme Campus de la Santé Mondiale.
View in Google Scholar
Getis, A., & Boots, B. (1978). Models of spatial processes. Cambridge University Press. Goel, R. K., Saunoris, J. W., & Goel, S. S. (2021). Supply chain performance and economic growth: The impact of COVID-19 disruptions. Journal of Policy Modeling, 43(2), 298–316.
View in Google Scholar
Goodchild, M. F. (1986). Spatial autocorrelation. Geo Books.
View in Google Scholar
Grömling, M. (2021). COVID-19 and the growth potential. Intereconomics, 56, 45–49. https://doi.org/10.1007/s10272-021-0950-4
View in Google Scholar
Haggett, P., Cliff, A. D., & Frey, A. (1977). Locational analysis in human geography (2nd ed., 2 vol.). Arnold.
View in Google Scholar
Haining, R., Wise, AS., & Ma, J. (1998). Exploratory spatial data analysis in a geographic information system environment. The Statistician, 47, 457–469.
View in Google Scholar
Hodrick, R., & Prescott, E. (1997). Postwar U.S. business cycles: An empirical investigation. Journal of Money, Credit and Banking, 29(1), 1–16.
View in Google Scholar
Le Gallo, J. (2002). Disparités géographiques et convergence des régions européennes: Une approche par l’économétrie spatiale. [Thèse de doctorat]. Université de Bourgogne.
View in Google Scholar
Maisonnave, H., & Cabral, F. (2021). L’impact du COVID-19 sur l’économie Sénégalaise: Une perspective de genre. Partnership for Economic Policy Working Paper, 2.
View in Google Scholar
Merow, C., & Urban, M. C. (2020). Seasonality and uncertainty in global COVID-19 growth rates. Nils Chr. Stenseth, University of Oslo.
View in Google Scholar
Moran, P. A. P. (1950). Notes on continuous stochastic phenomena. Biometrika, 37(1/2), 17–23.
View in Google Scholar
Naumov, I. V., Otmakhova, Y. S., & Krasnykh, S. S. (2021). Methodological approach to modeling and forecasting the impact of the spatial heterogeneity of the COVID-19 spread on the economic development of Russian regions. Computer Research and Modeling, 13(3), 629–648.
View in Google Scholar
OIT. (2020). Étude de l’impact de la COVID-19 sur les entreprises et travailleurs de l’économie informelle au Sénégal. Genève. Bureau International du Travail. https://www.ilo.org/wcmsp5/groups/public/---africa/---ro-abidjan/---srodakar/documents/publication/wcms_763402.pdf
View in Google Scholar
OMS. (2022). COVID-19 Dashboard. World Health Organization. https://covid19.who.int/
View in Google Scholar
Pfeiffer, D., Robinson, T., Stevenson, M., Stevens, K., Rogers, D., & Clements, A. (2008). Spatial analysis in epidemiology. Oxford University Press.
View in Google Scholar
Pisati, M. (2012). Exploratory spatial data analysis using Stata. German Stata Users Group meeting, WZB Social Science Research Center, Berlin.
View in Google Scholar
Ripley, B. D. (1981). Spatial statistics. John Wiley & Sons.
View in Google Scholar
Tobler, W. (1979). Cellular geography. In S. Gale & G. Olsson (Eds.), Philosophy in geography (pp. 379–386). Reidel.
View in Google Scholar
Upton, G. J. G., & Fingleton, B. (1985). Spatial data analysis by example. Vol. 1: Point pattern and quantitative data. John Wiley & Sons.
View in Google Scholar
World Bank. (2022). World development indicators. The World Bank.
View in Google Scholar
Xie, Z., Zhao, R., Ding, M., & Zhang, Z. (2021). A review of influencing factors on spatial ased on geographical perspective. International Journal of Envinmental Research and Public Health, 18(22), 12182.
View in Google Scholar
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Poznań University of Economics and Business
This work is licensed under a Creative Commons Attribution 4.0 International License.