Application of a single-equation SARIMA model for short-term conditional forecast (projection) of CPI price dynamics in Poland
DOI:
https://doi.org/10.18559/ref.2024.1.1158Keywords:
SARIMA, CPI, forecasting, monetary policy, inflation targeting strategyAbstract
The aim of the article is to construct an optimal SARIMA model for short-term conditional forecasting (projection) of the dynamics of prices expressed by the Consumer Price Index (CPI), as understood within the extended Box-Jenkins procedure. The construction of such a forecast aims to influence, through the expectations channel, the institutional trust of society in monetary authorities and assess the effectiveness of achieving the monetary policy goal within the framework of the democratic responsibility of the decision-making body of the National Bank of Poland – the Monetary Policy Council. The selection of the optimal SARIMA model was carried out using an iterative method within the Box-Jenkins procedure, with the goal of reducing the systematic bias of estimators – coherence with empirical data. The analysis was conducted on compiled secondary data of the monthly Consumer Price Index for goods and services from the Central Statistical Office for the years 2010-2023 (on a monthly basis). Results show that the short-term forecast demonstrated accuracy within a specified confidence interval. The application of the SARIMA model serves as a useful methodological tool for constructing elaborate DSGE models (for example, the NECMOD model) using procedures such as SEM (System for Averaging Models) from Norges Bank.
Downloads
References
Ancyparowicz, G. (2017). Wybrane aspekty strategii celu inflacyjnego w teorii i praktyce banków centralnych. Annales Universitatis Mariae Curie-Skłodowska. Sectio H. Oeconomia, 51(6), 11–20. https://doi.org/10.17951/h.2017.51.6.11
View in Google Scholar
Baciu, I. C. (2015). Stochastic models for forecasting inflation rate. Empirical evidence from Romania. Procedia Economics and Finance, 20, 44–52. https://doi.org/10.1016/S2212-5671(15)00045-3
View in Google Scholar
Banco Central de Chile. (2007). Central Bank of Chile: Monetary Policy in an Inflation Targeting Framework. Banco Central de Chile.
View in Google Scholar
Białek, J. (2014). Pomiar obciążenia wskaźnika cen towarów i usług konsumpcyjnych. Gospodarka Narodowa, 271(3), 63–80. https://doi.org/10.33119/GN/100882
View in Google Scholar
Box, G. E. P., & Jenkins, G. M. (1983). Analiza szeregów czasowych. Prognozowanie i sterowanie. PWN.
View in Google Scholar
Chakrabarti, A., & Ghosh, J.K. (2011). AIC, BIC and recent advances in model selection. Philosophy of Statistics, 7, 583–605. https://doi.org/10.1016/B978-0-444-51862-0.50018-6
View in Google Scholar
Ciżkowicz-Pękała, M., Grostal, W., Niedźwiedzińska, J., Skrzeszewska-Paczek, E., Stawasz-Grabowska, E., Wesołowski, G., & Żuk, P. (2019). Three decades of inflation targeting, NBP Working Paper, No. 314.
View in Google Scholar
Corpin, S. J. T., Marbella, J. N. P., Kua, Sh. J. J., Mabborang, R. C., & Lamprea, C. T. (2023). Forecasting inflation rate in the Philippines Using Seasonal Autoregressive Integrated Moving Average (SARIMA) Model. European Journal of Computer Science and Information Technology, 11(2), 13–36. https://doi.org/10.37745/ejcsit.2013/vol11n21336
View in Google Scholar
Dickey, D. A., Hasza, D. P., & Fuller, W. A. (1984). Testing for unit roots in seasonal time series. Journal of the American Statistical Association, 79(386), 355–367. https://doi.org/10.2307/2288276
View in Google Scholar
Dmytrów, K., & Doszyń, M. (2014). Prognozowanie sprzedaży z zastosowaniem rozkładu gamma z korekcją ze względu na wahania sezonowe. Studia i Prace Wydziału Nauk Ekonomicznych i Zarządzania, 36(2), 27–39.
View in Google Scholar
Domański, C. (2010). Properties of the Jarque-Bera test. Acta Universitatis Lodziensis, Folia Oeconomia, 235, 75–86.
View in Google Scholar
Dritsaki, Ch., Niklis, D., & Stamatiou, P. P. (2021). Oil Consumption Forecasting using ARIMA Models: An Empirical Study for Greece. International Journal of Energy, Economics and Policy, 11(4), 214–224. https://doi.org/10.32479/ijeep.11231
View in Google Scholar
European Commission. (2022). Convergence Report 2022. Institutional Paper 179, June 2022.
View in Google Scholar
Eurostat. (2009). ESS Guidelines on Seasonal Adjustment. Eurostat Methodologies and Working Papers.
View in Google Scholar
Eurostat. (2018). Harmonised Index of Consumer Prices (HICP). Methodological Manual. Manuals and guidelines.
View in Google Scholar
Federal Reserve Board. (1996). A Guide to FRB/US. A macroeconomic model of the United States. Macroeconomic and Quantitative Studies, Division of Research and Statistics.
View in Google Scholar
Gatnar, E. (2018). Statystyczne modele pomiaru inflacji w praktyce banków centralnych. Prace Naukowe Uniwersytetu Ekonomicznego we Wrocławiu / Research Papers of Wrocław University of Economics, 507, 75–85. https://doi.org/10.15611/pn.2018.507.07
View in Google Scholar
Gerdrup, K. R., & Nicolaisen, J. (2011). On the purpose of models – The Norges Bank ex- perience. Staff Memo, 6. https://www.norges-bank.no/en/news-events/news-publications/Papers/Staff-Memo/Staff-Memo-2011/Staff-Memo-62011/
View in Google Scholar
Greenspan, A. (2008). We will never have a perfect model of risk. Financial Times, March 17, p. 9.
View in Google Scholar
Grudkowska, S., & Paśnicka, E. (2007). X-12-ARIMA i TRAMO/SEATS – empiryczne porównanie metod wyrównania sezonowego w kontekście długości próby. Narodowy Bank Polski.
View in Google Scholar
Gruszczyński, M. (2022). Accounting and econometrics: From Paweł Ciompa to contem- porary research. Journal of Risk and Financial Management, 15(11), 1–10. https://doi.org/10.3390/jrfm15110510
View in Google Scholar
GUS (Główny Urząd Statystyczny). (2021). Ceny w gospodarce narodowej w 2020 r. https://stat.gov.pl/obszary-tematyczne/ceny-handel/ceny/ceny-w-gospodarce-narodowej-w-2020-r-,3,18.html
View in Google Scholar
GUS. (2022). Obroty towarowe handlu zagranicznego ogółem i według krajów w 2021 r. https://stat.gov.pl/obszary-tematyczne/ceny-handel/handel/obroty-towarowe-handlu-zagranicznego-ogolem-i-wedlug-krajow-dane-ostateczne-w-2021-r-,2,14.html
View in Google Scholar
GUS. (2023a). Informacja Głównego Urzędu Statystycznego w sprawie skorygowanego szacunku produktu krajowego brutto za 2022 rok. https://stat.gov.pl/obszary-tema-tyczne/rachunki-narodowe/roczne-rachunki-narodowe/informacja-glownego-urzedu-statystycznego-w-sprawie-skorygowanego-szacunku-produktu-krajowego-brutto-za-2022-rok,9,9.html
View in Google Scholar
GUS. (2023b). Miesięczne wskaźniki cen towarów i usług konsumpcyjnych od 1982. https://stat.gov.pl/obszary-tematyczne/ceny-handel/wskazniki-cen/wskazniki-cen-towarow-i-uslug-konsumpcyjnych-pot-inflacja-/miesieczne-wskazniki-cen-towarow-i-uslug-konsumpcyjnych-od-1982-roku
View in Google Scholar
Hałka, A., & Leszczyńska, A. (2011). Wady i zalety wskaźnika cen towarów i usług konsumpcyjnych – szacunki obciążenia dla Polski. Gospodarka Narodowa, 9, 51–75.
View in Google Scholar
Hammond, G. (2011). State of the art of inflation targeting. Centre for Central Banking Studies Handbook, No. 29, Bank of England.
View in Google Scholar
Hamulczuk, M., Grudkowska, S., Hertel, K., Klimkowski, C., & Stańko, S. (2011). Prognozowanie cen surowców rolnych z wykorzystaniem modeli szeregów czasowych. Instytut Ekonomiki Rolnictwa i Gospodarki Żywnościowej. Państwowy Instytut Badawczy.
View in Google Scholar
Hara, N., Ichiue, H., Kojima, S., & Nakamura, K. (2009). Practical use of macroeconomic models at central banks. Research and Statistics Department.
View in Google Scholar
Havi, K. E. D. (2023). Modeling and Forecasting of Inflation in Ghana: SARIMA Approach. European Scientific Journal, 20, 512–530.
View in Google Scholar
Hommes, C. H. (2005). Heterogeneous Agent Models in Economics and Finance. Tinbergen Institute Discussion Paper, No. TI 05-056/1.
View in Google Scholar
Hylleberg, S., Engle, R., Granger, C., & Yoo, B. S. (1990). Seasonal integration and cointegration. Journal of Econometrics, 44(1–2), 215–238.
View in Google Scholar
Kashpruk, N. (2021). Identyfikacja i prognozowanie szeregów czasowych na przykładzie modeli Boxa-Jenkinsa. In: A. Gonet (Ed.), Nauka – technika – technologia (vol. 1, pp. 91–100). Wydawnictwo AGH. https://doi.org/10.7494/978-83-66727-47-2_5
View in Google Scholar
Keynes, J. M. (1921). A treatise on probability. MacMillan.
View in Google Scholar
Keynes, J. M. (1930). A treatise on money. Cambridge University Press.
View in Google Scholar
Kravik, E. M., & Mimir, Y. (2019). Navigating with NEMO. Staff Memo, No. 5. https://www.norges-bank.no/aktuelt/nyheter-og-hendelser/Signerte-publikasjoner/Staff-Memo/2019/52019/
View in Google Scholar
Krukovets, D. (2024). Exploring an LSTM-SARIMA routine for core inflation forecasting. Technology Audit and Production Reserves, 2(76), 6–12. https://doi.org/10.15587/2706-5448.2024.301209
View in Google Scholar
Matysek-Jędrych, A. (2014). Odpowiedzialność i przejrzystość banku centralnego w działaniach na rzecz stabilności finansowej. Materiały i Studia – Narodowy Bank Polski.
View in Google Scholar
Miłek, M. (2017). Wykrywanie pierwiastków jednostkowych z wykorzystaniem testów permutacyjnych. Studia Ekonomiczne, 335, 27–38.
View in Google Scholar
Mises, L. (2011). Ludzkie działanie. Traktat o ekonomii. Instytut Misesa.
View in Google Scholar
Mishkin, F., & Schmidt-Hebbel, K. (2002). A decade of inflation targeting in the world: What do we know and what do we need to know? In: N. Loayza, R. Soto, N. Loayza,
View in Google Scholar
K. Schmidt-Hebbel (Eds.), Inflation Targeting: Desing, Performance, Challenges (vol. 5, pp. 171–220). Central Bank of Chile.
View in Google Scholar
Misztal, P. (2023). Komunikacja banków centralnych z rynkiem jako determinanta wiarygodności i skuteczności realizacji celu inflacyjnego na przykładzie banków centralnych wybranych krajów Europy Środkowej i Wschodniej. Przegląd Prawno-Ekonomiczny, 2, 101–134. https://doi.org/10.31743/ppe.15186
View in Google Scholar
Nazarko, J., & Chodakowska, E. (2022). Prognozowanie w zarządzaniu przedsiębiorstwem. Prognozowanie na podstawie modeli ARIMA. Oficyna Wydawnicza Politechniki Białostockiej.
View in Google Scholar
NBP. (2021). Raport roczny 2020. Narodowy Bank Polski.
View in Google Scholar
NBP. (2023). Raport roczny 2022. Płynność sektora bankowego. Instrumenty polityki pieniężnej NBP. Narodowy Bank Polski.
View in Google Scholar
Özmen, M., & Şanlı, S. (2017). Detecting the Best Seasonal ARIMA Forecasting Model for Monthly Inflation Rates in Turkey. Dokuz Eylül Üniversitesi İktisadi İdari Bilimler Fakültesi Dergisi, 32(2), 143–182. https://doi.org/10.24988/deuiibf.2017322602
View in Google Scholar
Pahlavani, M., & Roshan, R. (2015). The Comparison among ARIMA and hybrid ARIMA-GARCH Models in Forecasting the Exchange Rate of Iran. International Journal of Business and Development Studies, 7(1), 31–50. https://doi.org/10.22111/IJBDS.2015.2198
View in Google Scholar
Phillips, P. C. B., & Perron, P. (1988). Testing for a unit root in time series regression. Biometrika, 75, 335–346.
View in Google Scholar
Pietryka, I. (2008). Polityka pieniężna Narodowego Banku Polskiego w okresie 1999-wrzesień 2008. Equilibrium, 1(1-2), 23–37.
View in Google Scholar
Raa, T. (2009). Monopoly, Pareto and Ramsey Mark-ups. Journal of Industry, Competition and Trade, 9, 57–63.
View in Google Scholar
Roger, S. (2010). Inflation targeting turns 20. Finance & Development, International Monetary Fund, 47(1), 46–49.
View in Google Scholar
Romanuke, V. (2022). Arima Model optimal selection for time series forecasting. Maritime Technical Journal, 1(224), 28–40. https://doi.org/10.2478/sjpna-2022-0003
View in Google Scholar
Ruys, P. (2017). A development of the theory of the Ricardo effect. The Quarterly Journal of Austrian Economics, 20(4), 297–335.
View in Google Scholar
Sławiński, A. (2011). Polityka pieniężna. C. H. Beck.
View in Google Scholar
Tura, K. (2011). Wykorzystanie modeli DSGE w procesie prognostycznym na podstawie modeli stosowanych przez wybrane banki centralne. Ruch Prawniczy, Ekonomiczny i Socjologiczny, 1, 277–303.
View in Google Scholar
White, A. G. (1999). Measurement Biases in Consumer Price Indexes. International Statistical Review, 67(3), 301–325.
View in Google Scholar
Yusifov, M. (2014). Modelling the inflationary processes and forecasting: An Application of ARIMA, SARIMA Models. The Journal of Economic Sciences: Theory and Practice, 71(2), 66–80.
View in Google Scholar
Zhou, B., He, D., & Sun, Z. (2006). Traffic predictability based on ARIMA/GARCH model. In: 2nd Conference on Next Generation Internet Design and Engineering, 2006, NGI ’06, Valencia, Spain (pp. 200–207).
View in Google Scholar
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Patryk Kołbyko
This work is licensed under a Creative Commons Attribution 4.0 International License.
The Research Papers in Economics and Finance (REF) is committed to open access. All of the REF` s paper are free to access immediately from the date of publication. There are no author charges, known as APCs, before release, and no charge for any reader to download articles.
The Creative Commons Attribution 4.0 International license (CC BY 4.0) applies to articles published in Research Papers in Economics and Finance from Vol. 4, No. 3, 2020 to present. This license is acceptable for Free Cultural Works. You are free to share and adapt. You must give appropriate credit, provide a link to the license, and indicate if changes were made.
The Attribution-NonCommercial 4.0 International license (CC BY-NC 4.0) applies to articles published in Research Papers in Economics and Finance up to Vol. 4, No. 2, 2020 inclusive. You are free to share and adapt. You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may not use the material for commercial purposes.