How to fly to safety without overpaying for the ticket
DOI:
https://doi.org/10.18559/ebr.2023.2.738Keywords:
machine learning, recurrent neural networks, flight-to-safety, target volatility, asset allocation strategyAbstract
For most active investors treasury bonds (govs) provide diversification and thus reduce the risk of a portfolio. These features of govs become particularly desirable in times of elevated risk which materialize in the form of the flight-to-safety (FTS) phenomenon. The FTS for govs provides a shelter during market turbulence and is exceptionally beneficial for portfolio drawdown risk reduction. However what if the unsatisfactory expected return from treasuries discourages higher bonds allocations? This research proposes a solution to this problem with Deep Target Volatility Equity-Bond Allocation (DTVEBA) that dynamically allocate portfolios between equity and treasuries. The strategy is driven by a state-of-the-art recurrent neural network (RNN) that predicts next-day market volatility. An analysis conducted over a twelve year out-of-sample period found that with DTVEBA an investor may reduce treasury allocation by two (three) times to get the same Sharpe (Calmar) ratio and overperforms the S&P500 index by 43% (115%).
Downloads
References
Adrian, T., Crump, R. K., & Vogt, E. (2019). Nonlinearity and Flight‐to‐Safety in the Risk‐Return Trade‐Off for Stocks and Bonds. The Journal of Finance, 74(4), 1931–1973. https://doi.org/10.1111/jofi.12776 DOI: https://doi.org/10.1111/jofi.12776
View in Google Scholar
Andersen, T. G., & Bollerslev, T. (1998). Answering the Skeptics: Yes, Standard Volatility Models do Provide Accurate Forecasts. International Economic Review, 39(4), 885. https://doi.org/10.2307/2527343 DOI: https://doi.org/10.2307/2527343
View in Google Scholar
Baele, L., Bekaert, G., Inghelbrecht, K., & Wei, M. (2020). Flights to Safety. The Review of Financial Studies, 33(2), 689–746. https://doi.org/10.1093/rfs/hhz055 DOI: https://doi.org/10.1093/rfs/hhz055
View in Google Scholar
Barndorff-Nielsen, O. E. (2004). Power and Bipower Variation with Stochastic Volatility and Jumps. Journal of Financial Econometrics, 2(1), 1–37. https://doi.org/10.1093/jjfinec/nbh001 DOI: https://doi.org/10.1093/jjfinec/nbh001
View in Google Scholar
Baur, D. G., & Lucey, B. M. (2009). Flights and contagion-An empirical analysis of stock-bond correlations. Journal of Financial Stability, 5(4), 339–352. https://doi.org/10.1016/j.jfs.2008.08.001 DOI: https://doi.org/10.1016/j.jfs.2008.08.001
View in Google Scholar
Beber, A., Brandt, M. W., & Kavajecz, K. A. (2009). Flight-to-Quality or Flight-to-Liquidity? Evidence from the Euro-Area Bond Market. Review of Financial Studies, 22(3), 925–957. https://doi.org/10.1093/rfs/hhm088 DOI: https://doi.org/10.1093/rfs/hhm088
View in Google Scholar
Becker, R., Clements, A. E., Doolan, M. B., & Hurn, A. S. (2015). Selecting volatility forecasting models for portfolio allocation purposes. International Journal of Forecasting, 31(3), 849–861. https://doi.org/10.1016/j.ijforecast.2013.11.007 DOI: https://doi.org/10.1016/j.ijforecast.2013.11.007
View in Google Scholar
Będowska-Sójka, B. (2018). Is intraday data useful for forecasting VaR? The evidence from EUR/PLN exchange rate. Risk Management, 20(4), 326–346. https://doi.org/10.1057/s41283-018-0038-z DOI: https://doi.org/10.1057/s41283-018-0038-z
View in Google Scholar
Bengio, Y., Simard, P., & Frasconi, P. (1994). Learning Long-Term Dependencies with Gradient Descent is Difficult. IEEE Transactions on Neural Networks, 5(2), 157–166. https://doi.org/10.1109/72.279181 DOI: https://doi.org/10.1109/72.279181
View in Google Scholar
Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics, 31(3), 307–327. https://doi.org/10.1016/0304-4076(86)90063-1 DOI: https://doi.org/10.1016/0304-4076(86)90063-1
View in Google Scholar
Bongaerts, D., Kang, X., & van Dijk, M. (2020). Conditional Volatility Targeting. Financial Analysts Journal, 76(4), 54–71. https://doi.org/10.1080/0015198X.2020.1790853 DOI: https://doi.org/10.1080/0015198X.2020.1790853
View in Google Scholar
Boucher, C., & Tokpavi, S. (2019). Journal of International Money and Finance Stocks and bonds : Flight-to-safety for ever? Journal of International Money and Finance, 95, 27–43. https://doi.org/10.1016/j.jimonfin.2019.03.002 DOI: https://doi.org/10.1016/j.jimonfin.2019.03.002
View in Google Scholar
Brooks, C. (1998). Predicting stock index volatility: can market volume help? Journal of Forecasting, 17(1), 59–80. https://doi.org/10.1002/(SICI)1099-131X(199801)17:1<59::AID-FOR676>3.0.CO;2-H DOI: https://doi.org/10.1002/(SICI)1099-131X(199801)17:1<59::AID-FOR676>3.0.CO;2-H
View in Google Scholar
Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., & Bengio, Y. (2014). Learning phrase representations using RNN encoder-decoder for statistical machine translation. EMNLP 2014 - 2014 Conference on Empirical Methods in Natural Language Processing, Proceedings of the Conference, 1724–1734. https://doi.org/10.3115/v1/d14-1179 DOI: https://doi.org/10.3115/v1/D14-1179
View in Google Scholar
Christensen, K., Siggaard, M., & Veliyev, B. (2021). A machine learning approach to volatility forecasting. CREATES Research Papers. https://ideas.repec.org/p/aah/create/2021-03.html DOI: https://doi.org/10.1093/jjfinec/nbac020
View in Google Scholar
Cong, L., Tang, K., Wang, J., & Zhang, Y. (2020). Deep Sequence Modeling: Development and Applications in Asset Pricing. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3646170 DOI: https://doi.org/10.2139/ssrn.3646170
View in Google Scholar
Fleming, J., Kirby, C., & Ostdiek, B. (2003). The economic value of volatility timing using “realized” volatility. Journal of Financial Economics, 67(3), 473–509. https://doi.org/https://doi.org/10.1016/S0304-405X(02)00259-3 DOI: https://doi.org/10.1016/S0304-405X(02)00259-3
View in Google Scholar
Géron, A. (2019). Hands-on Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Incorporated. https://books.google.pl/books?id=OCS1twEACAAJ
View in Google Scholar
Glosten, L. R., Jagannathan, R., & Runkle, D. E. (1993). On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks. The Journal of Finance, 48(5), 1779–1801. https://doi.org/10.1111/j.1540-6261.1993.tb05128.x DOI: https://doi.org/10.1111/j.1540-6261.1993.tb05128.x
View in Google Scholar
Greff, K., Srivastava, R. K., Koutník, J., Steunebrink, B. R., & Schmidhuber, J. (2015). LSTM: A Search Space Odyssey. IEEE Transactions on Neural Networks and Learning Systems, 28(10), 2222–2232. https://doi.org/10.1109/TNNLS.2016.2582924 DOI: https://doi.org/10.1109/TNNLS.2016.2582924
View in Google Scholar
Gu, S., Kelly, B., & Xiu, D. (2020). Autoencoder asset pricing models. Journal of Econometrics. https://doi.org/10.1016/j.jeconom.2020.07.009 DOI: https://doi.org/10.2139/ssrn.3335536
View in Google Scholar
Hamid, S. A., & Iqbal, Z. (2004). Using neural networks for forecasting volatility of S&P 500 Index futures prices. Journal of Business Research, 57(10), 1116–1125. https://doi.org/https://doi.org/10.1016/S0148-2963(03)00043-2 DOI: https://doi.org/10.1016/S0148-2963(03)00043-2
View in Google Scholar
Hansen, P. R., & Lunde, A. (2005). A forecast comparison of volatility models: does anything beat a GARCH(1,1)? Journal of Applied Econometrics, 20(7), 873–889. https://doi.org/10.1002/jae.800 DOI: https://doi.org/10.1002/jae.800
View in Google Scholar
Heber, Gerd, Lunde, A., Shephard, N., & Sheppard, K. K. (2009). Oxford-Man Institute’s realized library. Oxford-Man Institute, University of Oxford, Library Version: 0.3. https://realized.oxford-man.ox.ac.uk/data/assets
View in Google Scholar
Hocquard, A., Ng, S., & Papageorgiou, N. (2013). A constant-volatility framework for managing tail risk. Journal of Portfolio Management, 39(2), 28–40. https://doi.org/10.3905/jpm.2013.39.2.028 DOI: https://doi.org/10.3905/jpm.2013.39.2.028
View in Google Scholar
Hyup Roh, T. (2007). Forecasting the volatility of stock price index. Expert Systems with Applications, 33(4), 916–922. https://doi.org/https://doi.org/10.1016/j.eswa.2006.08.001 DOI: https://doi.org/10.1016/j.eswa.2006.08.001
View in Google Scholar
Kaczmarek, T., Będowska-Sójka, B., Grobelny, P., & Perez, K. (2022). False Safe Haven Assets: Evidence From the Target Volatility Strategy Based on Recurrent Neural Network. Research in International Business and Finance, 101610. https://doi.org/10.1016/j.ribaf.2021.101610 DOI: https://doi.org/10.1016/j.ribaf.2021.101610
View in Google Scholar
Kim, H. Y., & Won, C. H. (2018). Forecasting the volatility of stock price index: A hybrid model integrating LSTM with multiple GARCH-type models. Expert Systems with Applications, 103, 25–37. https://doi.org/10.1016/j.eswa.2018.03.002 DOI: https://doi.org/10.1016/j.eswa.2018.03.002
View in Google Scholar
Kim, Y., & Enke, D. (2016). Using Neural Networks to Forecast Volatility for an Asset Allocation Strategy Based on the Target Volatility. Procedia Computer Science, 95, 281–286. https://doi.org/10.1016/J.PROCS.2016.09.335 DOI: https://doi.org/10.1016/j.procs.2016.09.335
View in Google Scholar
Kim, Y., & Enke, D. (2018). A dynamic target volatility strategy for asset allocation using artificial neural networks. The Engineering Economist, 63(4), 273–290. https://doi.org/10.1080/0013791X.2018.1461287 DOI: https://doi.org/10.1080/0013791X.2018.1461287
View in Google Scholar
Kingma, D. P., & Ba, J. L. (2015, December 22). Adam: A method for stochastic optimization. 3rd International Conference on Learning Representations, ICLR 2015 - Conference Track Proceedings.
View in Google Scholar
Lehnert, T. (2022). International Review of Financial Analysis Flight-to-safety and retail investor behavior. International Review of Financial Analysis, 81(February), 102142. https://doi.org/10.1016/j.irfa.2022.102142 DOI: https://doi.org/10.1016/j.irfa.2022.102142
View in Google Scholar
Longstaff, F. A. (2004). The flight-to-liquidity premium in U.S. treasury bond prices. Journal of Business, 77(3), 511–526. https://doi.org/10.1086/386528 DOI: https://doi.org/10.1086/386528
View in Google Scholar
Moreira, A., & Muir, T. (2017). Volatility-managed portfolios. The Journal of Finance, 72(4), 1611–1644. https://doi.org/10.1111/jofi.12513 DOI: https://doi.org/10.1111/jofi.12513
View in Google Scholar
Nelson, D. B. (1991). Conditional Heteroskedasticity in Asset Returns: A New Approach. Econometrica, 59(2), 347–370. https://doi.org/10.2307/2938260 DOI: https://doi.org/10.2307/2938260
View in Google Scholar
Perchet, R., de Carvalho, R. L., Heckel, T., & Moulin, P. (2015). Predicting the Success of Volatility Targeting Strategies: Application to Equities and Other Asset Classes. The Journal of Alternative Investments, 18(3), 21–38. https://doi.org/10.3905/jai.2016.18.3.021 DOI: https://doi.org/10.3905/jai.2016.18.3.021
View in Google Scholar
Poon, S. H., & Granger, C. (2005). Practical issues in forecasting volatility. Financial Analysts Journal, 61(1), 45–56. https://doi.org/10.2469/faj.v61.n1.2683 DOI: https://doi.org/10.2469/faj.v61.n1.2683
View in Google Scholar
Prokopczuk, M., & Wese Simen, C. (2014). The importance of the volatility risk premium for volatility forecasting. Journal of Banking & Finance, 40, 303–320. https://doi.org/10.1016/j.jbankfin.2013.12.002 DOI: https://doi.org/10.1016/j.jbankfin.2013.12.002
View in Google Scholar
Zakamulin, V. (2019). Volatility weighting over time in the presence of transaction costs. Journal of Wealth Management, 21(4), 33–45. https://doi.org/10.3905/jwm.2019.21.4.033 DOI: https://doi.org/10.3905/jwm.2019.21.4.033
View in Google Scholar
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Tomasz Kaczmarek, Przemysław Grobelny
This work is licensed under a Creative Commons Attribution 4.0 International License.