Clustering S&P 500 companies by machine learning for sustainable decision-making

Authors

DOI:

https://doi.org/10.18559/ebr.2025.3.1895

Keywords:

sustainability, clustering algorithms, machine learning

Abstract

This study examines the Environmental, Social, and Governance (ESG) performance of S&P 500 companies using three clustering algorithms: K-Means, Gaussian Mixture Model, and Agglomerative Clustering. ESG scores from leading data providers are analysed to uncover sectoral patterns and performance trends. The findings indicate that technology and healthcare firms achieve the highest ESG scores, particularly in the governance and social dimensions, while the industrial and energy sectors face the greatest environmental challenges. Among the methods compared, K-Means demonstrates superior clustering performance by forming compact and well-separated ESG groups. These results offer a robust foundation for sector-specific ESG benchmarking, supporting investors and policymakers in identifying sustainability leaders, assessing risk, and targeting areas for improvement.

JEL Classification

Sustainable Development (Q01)
Environment and Development • Environment and Trade • Sustainability • Environmental Accounts and Accounting • Environmental Equity • Population Growth (Q56)
Ecological Economics: Ecosystem Services • Biodiversity Conservation • Bioeconomics • Industrial Ecology (Q57)

Downloads

Download data is not yet available.

References

Aerts, L. (2020, May 28). Tracking customer segments in alternative finance using time-evolving cluster analysis. Econometrie. http://hdl.handle.net/2105/52256
View in Google Scholar

Ah-Pine, J. (2018). An efficient and effective generic agglomerative hierarchical clustering approach. Journal of Machine Learning Research, 19(42), 1–43.
View in Google Scholar

Atkins, J., Doni, F., Gasperini, A., Artuso, S., La Torre, I., & Sorrentino, L. (2023). Exploring the effectiveness of sustainability measurement: Which ESG metrics will survive COVID-19? Journal of Business Ethics, 185(3), 629–646. https://doi.org/10.1007/s10551-022-05183-1 DOI: https://doi.org/10.1007/s10551-022-05183-1
View in Google Scholar

Barney, J. (1991). Firm resources and sustained competitive advantage. Journal of Management, 17(1), 99–120. https://doi.org/10.1177/014920639101700108 DOI: https://doi.org/10.1177/014920639101700108
View in Google Scholar

Borms, S., Boudt, K., Holle, F. V., & Willems, J. (2021). Semi-supervised text mining for monitoring the news about the ESG performance of companies. In S. Consoli, DOI: https://doi.org/10.2139/ssrn.3868414
View in Google Scholar

D. Reforgiato Recupero & M. Saisana (Eds.), Data science for economics and finance: Methodologies and applications (pp. 217–239). Springer. https://doi.org/10.1007/978-3-030-66891-4_10 DOI: https://doi.org/10.1007/978-3-030-66891-4_10
View in Google Scholar

Brygała, M., & Korol, T. (2024). Personal bankruptcy prediction using machine learning techniques. Economics and Business Review, 10(2), 118–142. https://doi.org/10.18559/ebr.2024.2.1149 DOI: https://doi.org/10.18559/ebr.2024.2.1149
View in Google Scholar

Busch, T., Barnett, M. L., Burritt, R. L., Cashore, B. W., Freeman, R. E., Henriques, I., Husted, B. W., Panwar, R., Pinkse, J., Schaltegger, S., & York, J. (2024). Moving beyond “the” business case: How to make corporate sustainability work. Business Strategy and the Environment, 33(2), 776–787. https://doi.org/10.1002/bse.3514 DOI: https://doi.org/10.1002/bse.3514
View in Google Scholar

Chen, S., Song, Y., & Gao, P. (2023). Environmental, social, and governance (ESG) performance and financial outcomes: Analyzing the impact of ESG on financial performance. Journal of Environmental Management, 345, 118829. https://doi.org/10.1016/j.jenvman.2023.118829 DOI: https://doi.org/10.1016/j.jenvman.2023.118829
View in Google Scholar

Choi, S., & Yoon, S. (2023). Energy signature-based clustering using open data for urban building energy analysis toward carbon neutrality: A case study on electricity change under COVID-19. Sustainable Cities and Society, 92, 104471. https://doi.org/10.1016/j.scs.2023.104471 DOI: https://doi.org/10.1016/j.scs.2023.104471
View in Google Scholar

Clément, A., Robinot, É., & Trespeuch, L. (2022). Improving ESG scores with sustainability concepts. Sustainability, 14(20), 13154. https://doi.org/10.3390/su142013154 DOI: https://doi.org/10.3390/su142013154
View in Google Scholar

Clementino, E., & Perkins, R. (2021). How do companies respond to environmental, social and governance (ESG) ratings? Evidence from Italy. Journal of Business Ethics, 171(2), 379–397. https://doi.org/10.1007/s10551-020-04441-4 DOI: https://doi.org/10.1007/s10551-020-04441-4
View in Google Scholar

Cleuziou, G. (2007). A generalization of K-Means for overlapping clustering. Rapport Technique, 54.
View in Google Scholar

Costantiello, A., & Leogrande, A. (2023). The impact of voice and accountability in the ESG framework in a global perspective. DOI: https://doi.org/10.21203/rs.3.rs-2729436/v1
View in Google Scholar

Ehling, P., Haukø Lundeby, S. R., & Qvigstad Sørensen, L. (2023). Portfolio choice with ESG Disagreement: Customizing sustainability through direct indexing. Journal of Beta Investment Strategies, 14(3), 132–149. https://doi.org/10.3905/jbis.2023.1.041 DOI: https://doi.org/10.3905/jbis.2023.1.041
View in Google Scholar

Elisabetta, D., & Iannuzzi, A. P. (2017). Incentive plans, pay-for-non-financial performance, and ESG criteria: Evidence from the European banking sector. International Business Research, 10(10), 169–182. https://doi.org/10.5539/ibr.v10n10p169 DOI: https://doi.org/10.5539/ibr.v10n10p169
View in Google Scholar

Evans, G. L. (2017). Disruptive technology and the board: The tip of the iceberg. Economics and Business Review, 3(1), 205–223. https://doi.org/10.18559/ebr.2017.1.11 DOI: https://doi.org/10.18559/ebr.2017.1.11
View in Google Scholar

Freeman, R. E. (2010). Strategic management: A stakeholder approach. Cambridge University Press. DOI: https://doi.org/10.1017/CBO9781139192675
View in Google Scholar

Friede, G., Busch, T., & Bassen, A. (2015). ESG and financial performance: Aggregated evidence from more than 2000 empirical studies. Journal of Sustainable Finance & Investment, 5(4), 210–233. https://doi.org/10.1080/20430795.2015.1118917 DOI: https://doi.org/10.1080/20430795.2015.1118917
View in Google Scholar

Gebhardt, M., Thun, T. W., Seefloth, M., & Zülch, H. (2023). Managing sustainability—Does the integration of environmental, social and governance key performance indicators in the internal management systems contribute to companies’ environmental, social and governance performance? Business Strategy and the Environment, 32(4), 2175–2192. https://doi.org/10.1002/bse.3242 DOI: https://doi.org/10.1002/bse.3242
View in Google Scholar

González-Serrano, M. H., Añó Sanz, V., & González-García, R. J. (2020). Sustainable sport entrepreneurship and innovation: A bibliometric analysis of this emerging field of research. Sustainability, 12(12), 5209. https://doi.org/10.3390/su12125209 DOI: https://doi.org/10.3390/su12125209
View in Google Scholar

Grougiou, V., Anagnostopoulou, S., & Tingey-Holyoak, J. L. (2024). Sustainability literature review research: Advancing theory and practice. Sustainability Accounting, Management and Policy Journal, 15(5), 1017–1037. https://doi.org/10.1108/SAMPJ-03-2024-0198 DOI: https://doi.org/10.1108/SAMPJ-03-2024-0198
View in Google Scholar

Iamandi, I. E., Constantin, L. G., Munteanu, S. M., & Cernat-Gruici, B. (2019). Mapping the ESG behavior of European companies. A holistic Kohonen approach. Sustainability, 11(12), 3276. https://doi.org/10.3390/su11123276 DOI: https://doi.org/10.3390/su11123276
View in Google Scholar

Jain, A. K. (2010). Data clustering: 50 years beyond K-means. Pattern recognition letters, 31(8), 651–666. https://doi.org/10.1016/j.patrec.2009.09.011 DOI: https://doi.org/10.1016/j.patrec.2009.09.011
View in Google Scholar

Janipour, Z., de Gooyert, V., Huijbregts, M., & de Coninck, H. (2022). Industrial clustering as a barrier and an enabler for deep emission reduction: A case study of a Dutch chemical cluster. Climate Policy, 22(3), 320–338. https://doi.org/10.1080/14693062.2022.2025755 DOI: https://doi.org/10.1080/14693062.2022.2025755
View in Google Scholar

Jiménez, E., de la Cuesta-González, M., & Boronat-Navarro, M. (2021). How small and medium-sized enterprises can uptake the sustainable development goals through a cluster management organization: A case study. Sustainability, 13(11), 5939. https://doi.org/10.3390/su13115939 DOI: https://doi.org/10.3390/su13115939
View in Google Scholar

Kanemoto, K., Hanaka, T., Kagawa, S., & Nansai, K. (2019). Industrial clusters with substantial carbon-reduction potential. Economic Systems Research, 31(2), 248–266. https://doi.org/10.1080/09535314.2018.1492369 DOI: https://doi.org/10.1080/09535314.2018.1492369
View in Google Scholar

Khalil, M. A., Khalil, S., & Sinliamthong, P. (2024). From ratings to resilience: The role and implications of environmental, social, and governance (ESG) performance in corporate solvency. Sustainable Futures, 8, 100304. https://doi.org/10.1016/j.sftr.2024.100304 DOI: https://doi.org/10.1016/j.sftr.2024.100304
View in Google Scholar

Ko, B., Lee, K., Yoon, Y., & Park, S. (2022). Impact of ESG (Environmental, Social, Governance) on the Performance of Electric Utilities. New & Renewable Energy, 18(2), 60–72. https://doi.org/10.7849/ksnre.2022.0010 DOI: https://doi.org/10.7849/ksnre.2022.0010
View in Google Scholar

Kocmanová, A., & Dočekalová, M. (2012). Construction of the economic indicators of performance in relation to environmental, social and corporate governance (ESG) factors. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 60(4), 195–206. DOI: https://doi.org/10.11118/actaun201260040195
View in Google Scholar

Kodinariya, T. M., & Makwana, P. R. (2013). Review on determining number of Cluster in K-Means clustering. International Journal, 1(6), 90–95.
View in Google Scholar

Kotsantonis, S., & Serafeim, G. (2019). Four things no one will tell you about ESG data. Journal of Applied Corporate Finance, 31(2), 50–58. https://doi.org/10.1111/ jacf.12346 DOI: https://doi.org/10.1111/jacf.12346
View in Google Scholar

Kuo, K. C., Yu, H. Y., Lu, W. M., & Le, T. T. (2022). Sustainability and corporate performance: Moderating role of environmental, social, and governance investments in the transportation sector. Sustainability, 14(7), 4095. https://doi.org/10.3390/su14074095 DOI: https://doi.org/10.3390/su14074095
View in Google Scholar

LaBella, M. J., Sullivan, L., Russell, J., & Novikov, D. (2019). The devil is in the details: The divergence in ESG data and implications for responsible investing. New York: QS Investors, 11.
View in Google Scholar

Li, T. T., Wang, K., Sueyoshi, T., & Wang, D. D. (2021). ESG: Research progress and future prospects. Sustainability, 13(21), 11663. https://doi.org/10.3390/su132111663 DOI: https://doi.org/10.3390/su132111663
View in Google Scholar

Lin, A. J., Chang, H. Y., & Hung, B. (2022). Identifying key financial, environmental, social, governance (ESG), bond, and COVID-19 factors affecting global shipping companies—a hybrid multiple-criteria decision-making method. Sustainability, 14(9), 5148. https://doi.org/10.3390/su14095148 DOI: https://doi.org/10.3390/su14095148
View in Google Scholar

Ma, B., Lin, S., Bashir, M. F., Sun, H., & Zafar, M. (2023). Revisiting the role of firm-level carbon disclosure in sustainable development goals: Research agenda and policy implications. Gondwana Research, 117, 230–242. https://doi.org/10.1016/j.gr.2023.02.002 DOI: https://doi.org/10.1016/j.gr.2023.02.002
View in Google Scholar

MacNeil, I., & Esser, I. M. (2022). From a financial to an entity model of ESG. European Business Organization Law Review, 23(1), 9–45. https://doi.org/10.1007/s40804-021-00234-y DOI: https://doi.org/10.1007/s40804-021-00234-y
View in Google Scholar

Manduchi, L., Chin-Cheong, K., Michel, H., Wellmann, S., & Vogt, J. (2021). Deep conditional Gaussian mixture model for constrained clustering. Advances in Neural Information Processing Systems, 34, 11303–11314.
View in Google Scholar

Marie, M., Qi, B., Gerged, A. M., & Nobanee, H. (2024). Exploring environmental, social and governance research in the wake of COVID‐19: A bibliometric analysis of current trends and recommendations for future research. Corporate Social Responsibility and Environmental Management, 31(6), 6131–6149. https://doi.org/10.1002/csr.2909 DOI: https://doi.org/10.1002/csr.2909
View in Google Scholar

Nakielski, M. L. (2023). Moving forward with ESG, sustainability, and Corporate Responsibility. Frontiers of Health Services Management, 40(1), 33–39. https://doi.org/10.1097/HAP.0000000000000178 DOI: https://doi.org/10.1097/HAP.0000000000000178
View in Google Scholar

Nielsen, H., & Villadsen, K. (2023). The ESG discourse is neither timeless nor stable: How Danish companies ‘tactically ’embrace ESG concepts. Sustainability, 15(3), 2766. https://doi.org/10.3390/su15032766 DOI: https://doi.org/10.3390/su15032766
View in Google Scholar

Orchard, T., & Tasiemski, L. (2023). The rise of generative AI and possible effects on the economy. Economics and Business Review, 9(2), 9–26. https://doi.org/10.18559/ebr.2023.2.732 DOI: https://doi.org/10.18559/ebr.2023.2.732
View in Google Scholar

Paolone, F., Cucari, N., Wu, J., & Tiscini, R. (2022). How do ESG pillars impact firms’ marketing performance? A configurational analysis in the pharmaceutical sector. Journal of Business & Industrial Marketing, 37(8), 1594–1606. https://doi.org/10.1108/JBIM-07-2020-0356 DOI: https://doi.org/10.1108/JBIM-07-2020-0356
View in Google Scholar

Papagiannidis, S., See-To, E. W., Assimakopoulos, D. G., & Yang, Y. (2018). Identifying industrial clusters with a novel big-data methodology: Are SIC codes (not) fit for purpose in the Internet age? Computers & Operations Research, 98, 355–366. https://doi.org/10.1016/j.cor.2017.06.010 DOI: https://doi.org/10.1016/j.cor.2017.06.010
View in Google Scholar

Park, S. R., & Jang, J. Y. (2021). The impact of ESG management on investment decision: Institutional investors’ perceptions of country-specific ESG criteria. International Journal of Financial Studies, 9(3), 48. https://doi.org/10.3390/ijfs9030048 DOI: https://doi.org/10.3390/ijfs9030048
View in Google Scholar

Park, A., & Ravenel, C. (2013). Integrating sustainability into capital markets: Bloomberg LP And ESG’s quantitative legitimacy. Journal of Applied Corporate Finance, 25(3), 62-67. https://doi.org/10.1111/jacf.12030 DOI: https://doi.org/10.1111/jacf.12030
View in Google Scholar

Radu, C., & Smaili, N. (2021). Corporate performance patterns of Canadian listed firms: Balancing financial and Corporate Social Responsibility outcomes. Business Strategy and the Environment, 30(7), 3344–3359. https://doi.org/10.1002/bse.2806 DOI: https://doi.org/10.1002/bse.2806
View in Google Scholar

Ratnam, K. A., & Dominic, P. D. D. (2011, September 19–20). A study of technology sustainability on hospital information management system (HIMS) Governance in Malaysia. 2011 National Postgraduate Conference, IEEE. Perak. Malaysia. https://doi.org/10.1109/NatPC.2011.6136309 DOI: https://doi.org/10.1109/NatPC.2011.6136309
View in Google Scholar

Ronalter, L. M., Bernardo, M., & Romaní, J. M. (2023). Quality and environmental management systems as business tools to enhance ESG performance: A cross-regional empirical study. Environment, Development and Sustainability, 25(9), 9067–9109. https://doi.org/10.1007/s10668-022-02425-0 DOI: https://doi.org/10.1007/s10668-022-02425-0
View in Google Scholar

Rusu, Ș., Boloș, M. I., & Leordeanu, M. (2023). K-means and agglomerative hierarchical clustering analysis of ESG scores, yearly variations, and stock returns: Insights from the energy sector in Europe and the United States. Journal of Financial Studies, 8(Special-June), 166–180. DOI: https://doi.org/10.55654/JFS.2023.SP.11
View in Google Scholar

Saini, N., Singhania, M., Hasan, M., Yadav, M. P., & Abedin, M. Z. (2022). Non-financial disclosures and sustainable development: A scientometric analysis. Journal of Cleaner Production, 381, 135173. https://doi.org/10.1016/j.jclepro.2022.135173 DOI: https://doi.org/10.1016/j.jclepro.2022.135173
View in Google Scholar

Saraswati, E., Ghofar, A., Atmini, S., & Dewi, A. A. (2024). Clustering of companies based on sustainability performance using ESG materiality approach: evidence from Indonesia. International Journal of Energy Economics and Policy, 14(2), 112–125. https://doi.org/10.32479/ijeep.15393 DOI: https://doi.org/10.32479/ijeep.15393
View in Google Scholar

Sariyer, G., Mangla, S. K., Chowdhury, S., Sozen, M. E., & Kazancoglu, Y. (2024). Predictive and prescriptive analytics for ESG performance evaluation: A case of Fortune 500 companies. Journal of Business Research, 181, 114742. https://doi.org/10.1016/j.jbusres.2024.114742 DOI: https://doi.org/10.1016/j.jbusres.2024.114742
View in Google Scholar

Scrucca, L., Fop, M., Murphy, T. B., & Raftery, A. E. (2016). mclust 5: Clustering, classification and density estimation using Gaussian finite mixture models. The R Journal, 8(1), 289. DOI: https://doi.org/10.32614/RJ-2016-021
View in Google Scholar

Spence, M. (1978). Job market signaling. In Uncertainty in economics (pp. 281–306). Academic Press. DOI: https://doi.org/10.1016/B978-0-12-214850-7.50025-5
View in Google Scholar

Sultana, S., Zulkifli, N., & Zainal, D. (2018). Environmental, social and governance (ESG) and investment decision in Bangladesh. Sustainability, 10(6), 1831. https://doi.org/10.3390/su10061831 DOI: https://doi.org/10.3390/su10061831
View in Google Scholar

Sun, Y., Chen, M., Yang, J., Ying, L., & Niu, Y. (2022). Understanding technological input and low-carbon innovation from multiple perspectives: Focusing on sustainable building energy in China. Sustainable Energy Technologies and Assessments, 53, 102474. https://doi.org/10.1016/j.seta.2022.102474 DOI: https://doi.org/10.1016/j.seta.2022.102474
View in Google Scholar

Suproń, B. (2025). Environmental pollution and economic growth in the European Union countries: A systematic literature review. Economics and Business Review, 11(1), 7-30. https://doi.org/10.18559/ebr.2025.1.1777 DOI: https://doi.org/10.18559/ebr.2025.1.1777
View in Google Scholar

Surroca, J., Tribó, J. A., & Waddock, S. (2010). Corporate responsibility and financial performance: The role of intangible resources. Strategic Management Journal, 31(5), 463–490. https://doi.org/10.1002/smj.820 DOI: https://doi.org/10.1002/smj.820
View in Google Scholar

Van Holt, T., & Whelan, T. (2021). Research frontiers in the era of embedding sustainability: Bringing social and environmental systems to the forefront. Journal of Sustainability Research, 3(2). DOI: https://doi.org/10.20900/jsr20210010
View in Google Scholar

Vichi, M., Cavicchia, C., & Groenen, P. J. (2022). Hierarchical means clustering. Journal of Classification, 39(3), 553–577. https://doi.org/10.1007/s00357-022-09419-7 DOI: https://doi.org/10.1007/s00357-022-09419-7
View in Google Scholar

Vilas, P., Andreu, L., & Sarto, J. L. (2022). Cluster analysis to validate the sustainability label of stock indices: An analysis of the inclusion and exclusion processes in terms of size and ESG ratings. Journal of Cleaner Production, 330, 129862. https://doi.org/10.1016/j.jclepro.2021.129862 DOI: https://doi.org/10.1016/j.jclepro.2021.129862
View in Google Scholar

Vinayavekhin, S., Li, F., Banerjee, A., & Caputo, A. (2023). The academic landscape of sustainability in management literature: Towards a more interdisciplinary research agenda. Business Strategy and the Environment, 32(8), 5748-5784. https://doi.org/10.1002/bse.3447 DOI: https://doi.org/10.1002/bse.3447
View in Google Scholar

Wu, B., Gu, Q., Liu, Z., & Liu, J. (2023). Clustered institutional investors, shared ESG preferences and low-carbon innovation in family firm. Technological Forecasting and Social Change, 194, 122676. https://doi.org/10.1016/j.techfore.2023.122676 DOI: https://doi.org/10.1016/j.techfore.2023.122676
View in Google Scholar

Xie, J., Nozawa, W., Yagi, M., Fujii, H., & Managi, S. (2019). Do environmental, social, and governance activities improve corporate financial performance? Business Strategy and the Environment, 28(2), 286–300. https://doi.org/10.1002/bse.2224 DOI: https://doi.org/10.1002/bse.2224
View in Google Scholar

Zhong, W. (2023). An analysis of focusing on ESG investment. Highlights in Business, Economics and Management, 17(1), 8–13. DOI: https://doi.org/10.54097/hbem.v17i.11016
View in Google Scholar

Downloads

Published

2025-09-30

Issue

Section

Research article- regular issue

How to Cite

Ergenç, C., & Aktaş, R. (2025). Clustering S&P 500 companies by machine learning for sustainable decision-making. Economics and Business Review, 11(3), 91-117. https://doi.org/10.18559/ebr.2025.3.1895

Similar Articles

1-10 of 35

You may also start an advanced similarity search for this article.